Cargando…
Prediction of Cardiac Mechanical Performance From Electrical Features During Ventricular Tachyarrhythmia Simulation Using Machine Learning Algorithms
In ventricular tachyarrhythmia, electrical instability features including action potential duration, dominant frequency, phase singularity, and filaments are associated with mechanical contractility. However, there are insufficient studies on estimated mechanical contractility based on electrical fe...
Autores principales: | Jeong, Da Un, Lim, Ki Moo |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7732497/ https://www.ncbi.nlm.nih.gov/pubmed/33329041 http://dx.doi.org/10.3389/fphys.2020.591681 |
Ejemplares similares
-
Relationship Between Electrical Instability and Pumping Performance During Ventricular Tachyarrhythmia: Computational Study
por: Jeong, Da Un, et al.
Publicado: (2020) -
Influence of the KCNQ1 S140G Mutation on Human Ventricular Arrhythmogenesis and Pumping Performance: Simulation Study
por: Jeong, Da Un, et al.
Publicado: (2018) -
Sensitivity Analysis of Cardiac Alternans and Tachyarrhythmia to Ion Channel Conductance Using Population Modeling
por: Jeong, Da Un, et al.
Publicado: (2022) -
In silico Prediction of Sex-Based Differences in Human Susceptibility to Cardiac Ventricular Tachyarrhythmias
por: Yang, Pei-Chi, et al.
Publicado: (2012) -
Application of a convolutional neural network for predicting the occurrence of ventricular tachyarrhythmia using heart rate variability features
por: Taye, Getu Tadele, et al.
Publicado: (2020)