Cargando…
Deep-learning-based segmentation of the vocal tract and articulators in real-time magnetic resonance images of speech
BACKGROUND AND OBJECTIVE: Magnetic resonance (MR) imaging is increasingly used in studies of speech as it enables non-invasive visualisation of the vocal tract and articulators, thus providing information about their shape, size, motion and position. Extraction of this information for quantitative a...
Autores principales: | Ruthven, Matthieu, Miquel, Marc E., King, Andrew P. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier Scientific Publishers
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7732702/ https://www.ncbi.nlm.nih.gov/pubmed/33197740 http://dx.doi.org/10.1016/j.cmpb.2020.105814 |
Ejemplares similares
-
A segmentation-informed deep learning framework to register dynamic two-dimensional magnetic resonance images of the vocal tract during speech
por: Ruthven, Matthieu, et al.
Publicado: (2023) -
Real-time speech MRI datasets with corresponding articulator ground-truth segmentations
por: Ruthven, Matthieu, et al.
Publicado: (2023) -
Realistic Dynamic Numerical Phantom for MRI of the Upper Vocal Tract
por: Martin, Joe, et al.
Publicado: (2020) -
Vocal Tract Articulation in Zebra Finches
por: Ohms, Verena R., et al.
Publicado: (2010) -
Advances in real-time magnetic resonance imaging of the vocal tract for speech science and technology research
por: TOUTIOS, ASTERIOS, et al.
Publicado: (2016)