Cargando…

Automation and control of laser wakefield accelerators using Bayesian optimization

Laser wakefield accelerators promise to revolutionize many areas of accelerator science. However, one of the greatest challenges to their widespread adoption is the difficulty in control and optimization of the accelerator outputs due to coupling between input parameters and the dynamic evolution of...

Descripción completa

Detalles Bibliográficos
Autores principales: Shalloo, R. J., Dann, S. J. D., Gruse, J.-N., Underwood, C. I. D., Antoine, A. F., Arran, C., Backhouse, M., Baird, C. D., Balcazar, M. D., Bourgeois, N., Cardarelli, J. A., Hatfield, P., Kang, J., Krushelnick, K., Mangles, S. P. D., Murphy, C. D., Lu, N., Osterhoff, J., Põder, K., Rajeev, P. P., Ridgers, C. P., Rozario, S., Selwood, M. P., Shahani, A. J., Symes, D. R., Thomas, A. G. R., Thornton, C., Najmudin, Z., Streeter, M. J. V.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7732832/
https://www.ncbi.nlm.nih.gov/pubmed/33311487
http://dx.doi.org/10.1038/s41467-020-20245-6
_version_ 1783622173820190720
author Shalloo, R. J.
Dann, S. J. D.
Gruse, J.-N.
Underwood, C. I. D.
Antoine, A. F.
Arran, C.
Backhouse, M.
Baird, C. D.
Balcazar, M. D.
Bourgeois, N.
Cardarelli, J. A.
Hatfield, P.
Kang, J.
Krushelnick, K.
Mangles, S. P. D.
Murphy, C. D.
Lu, N.
Osterhoff, J.
Põder, K.
Rajeev, P. P.
Ridgers, C. P.
Rozario, S.
Selwood, M. P.
Shahani, A. J.
Symes, D. R.
Thomas, A. G. R.
Thornton, C.
Najmudin, Z.
Streeter, M. J. V.
author_facet Shalloo, R. J.
Dann, S. J. D.
Gruse, J.-N.
Underwood, C. I. D.
Antoine, A. F.
Arran, C.
Backhouse, M.
Baird, C. D.
Balcazar, M. D.
Bourgeois, N.
Cardarelli, J. A.
Hatfield, P.
Kang, J.
Krushelnick, K.
Mangles, S. P. D.
Murphy, C. D.
Lu, N.
Osterhoff, J.
Põder, K.
Rajeev, P. P.
Ridgers, C. P.
Rozario, S.
Selwood, M. P.
Shahani, A. J.
Symes, D. R.
Thomas, A. G. R.
Thornton, C.
Najmudin, Z.
Streeter, M. J. V.
author_sort Shalloo, R. J.
collection PubMed
description Laser wakefield accelerators promise to revolutionize many areas of accelerator science. However, one of the greatest challenges to their widespread adoption is the difficulty in control and optimization of the accelerator outputs due to coupling between input parameters and the dynamic evolution of the accelerating structure. Here, we use machine learning techniques to automate a 100 MeV-scale accelerator, which optimized its outputs by simultaneously varying up to six parameters including the spectral and spatial phase of the laser and the plasma density and length. Most notably, the model built by the algorithm enabled optimization of the laser evolution that might otherwise have been missed in single-variable scans. Subtle tuning of the laser pulse shape caused an 80% increase in electron beam charge, despite the pulse length changing by just 1%.
format Online
Article
Text
id pubmed-7732832
institution National Center for Biotechnology Information
language English
publishDate 2020
publisher Nature Publishing Group UK
record_format MEDLINE/PubMed
spelling pubmed-77328322020-12-17 Automation and control of laser wakefield accelerators using Bayesian optimization Shalloo, R. J. Dann, S. J. D. Gruse, J.-N. Underwood, C. I. D. Antoine, A. F. Arran, C. Backhouse, M. Baird, C. D. Balcazar, M. D. Bourgeois, N. Cardarelli, J. A. Hatfield, P. Kang, J. Krushelnick, K. Mangles, S. P. D. Murphy, C. D. Lu, N. Osterhoff, J. Põder, K. Rajeev, P. P. Ridgers, C. P. Rozario, S. Selwood, M. P. Shahani, A. J. Symes, D. R. Thomas, A. G. R. Thornton, C. Najmudin, Z. Streeter, M. J. V. Nat Commun Article Laser wakefield accelerators promise to revolutionize many areas of accelerator science. However, one of the greatest challenges to their widespread adoption is the difficulty in control and optimization of the accelerator outputs due to coupling between input parameters and the dynamic evolution of the accelerating structure. Here, we use machine learning techniques to automate a 100 MeV-scale accelerator, which optimized its outputs by simultaneously varying up to six parameters including the spectral and spatial phase of the laser and the plasma density and length. Most notably, the model built by the algorithm enabled optimization of the laser evolution that might otherwise have been missed in single-variable scans. Subtle tuning of the laser pulse shape caused an 80% increase in electron beam charge, despite the pulse length changing by just 1%. Nature Publishing Group UK 2020-12-11 /pmc/articles/PMC7732832/ /pubmed/33311487 http://dx.doi.org/10.1038/s41467-020-20245-6 Text en © The Author(s) 2020 Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/.
spellingShingle Article
Shalloo, R. J.
Dann, S. J. D.
Gruse, J.-N.
Underwood, C. I. D.
Antoine, A. F.
Arran, C.
Backhouse, M.
Baird, C. D.
Balcazar, M. D.
Bourgeois, N.
Cardarelli, J. A.
Hatfield, P.
Kang, J.
Krushelnick, K.
Mangles, S. P. D.
Murphy, C. D.
Lu, N.
Osterhoff, J.
Põder, K.
Rajeev, P. P.
Ridgers, C. P.
Rozario, S.
Selwood, M. P.
Shahani, A. J.
Symes, D. R.
Thomas, A. G. R.
Thornton, C.
Najmudin, Z.
Streeter, M. J. V.
Automation and control of laser wakefield accelerators using Bayesian optimization
title Automation and control of laser wakefield accelerators using Bayesian optimization
title_full Automation and control of laser wakefield accelerators using Bayesian optimization
title_fullStr Automation and control of laser wakefield accelerators using Bayesian optimization
title_full_unstemmed Automation and control of laser wakefield accelerators using Bayesian optimization
title_short Automation and control of laser wakefield accelerators using Bayesian optimization
title_sort automation and control of laser wakefield accelerators using bayesian optimization
topic Article
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7732832/
https://www.ncbi.nlm.nih.gov/pubmed/33311487
http://dx.doi.org/10.1038/s41467-020-20245-6
work_keys_str_mv AT shalloorj automationandcontroloflaserwakefieldacceleratorsusingbayesianoptimization
AT dannsjd automationandcontroloflaserwakefieldacceleratorsusingbayesianoptimization
AT grusejn automationandcontroloflaserwakefieldacceleratorsusingbayesianoptimization
AT underwoodcid automationandcontroloflaserwakefieldacceleratorsusingbayesianoptimization
AT antoineaf automationandcontroloflaserwakefieldacceleratorsusingbayesianoptimization
AT arranc automationandcontroloflaserwakefieldacceleratorsusingbayesianoptimization
AT backhousem automationandcontroloflaserwakefieldacceleratorsusingbayesianoptimization
AT bairdcd automationandcontroloflaserwakefieldacceleratorsusingbayesianoptimization
AT balcazarmd automationandcontroloflaserwakefieldacceleratorsusingbayesianoptimization
AT bourgeoisn automationandcontroloflaserwakefieldacceleratorsusingbayesianoptimization
AT cardarellija automationandcontroloflaserwakefieldacceleratorsusingbayesianoptimization
AT hatfieldp automationandcontroloflaserwakefieldacceleratorsusingbayesianoptimization
AT kangj automationandcontroloflaserwakefieldacceleratorsusingbayesianoptimization
AT krushelnickk automationandcontroloflaserwakefieldacceleratorsusingbayesianoptimization
AT manglesspd automationandcontroloflaserwakefieldacceleratorsusingbayesianoptimization
AT murphycd automationandcontroloflaserwakefieldacceleratorsusingbayesianoptimization
AT lun automationandcontroloflaserwakefieldacceleratorsusingbayesianoptimization
AT osterhoffj automationandcontroloflaserwakefieldacceleratorsusingbayesianoptimization
AT poderk automationandcontroloflaserwakefieldacceleratorsusingbayesianoptimization
AT rajeevpp automationandcontroloflaserwakefieldacceleratorsusingbayesianoptimization
AT ridgerscp automationandcontroloflaserwakefieldacceleratorsusingbayesianoptimization
AT rozarios automationandcontroloflaserwakefieldacceleratorsusingbayesianoptimization
AT selwoodmp automationandcontroloflaserwakefieldacceleratorsusingbayesianoptimization
AT shahaniaj automationandcontroloflaserwakefieldacceleratorsusingbayesianoptimization
AT symesdr automationandcontroloflaserwakefieldacceleratorsusingbayesianoptimization
AT thomasagr automationandcontroloflaserwakefieldacceleratorsusingbayesianoptimization
AT thorntonc automationandcontroloflaserwakefieldacceleratorsusingbayesianoptimization
AT najmudinz automationandcontroloflaserwakefieldacceleratorsusingbayesianoptimization
AT streetermjv automationandcontroloflaserwakefieldacceleratorsusingbayesianoptimization