Cargando…
Machine learning uncovers independently regulated modules in the Bacillus subtilis transcriptome
The transcriptional regulatory network (TRN) of Bacillus subtilis coordinates cellular functions of fundamental interest, including metabolism, biofilm formation, and sporulation. Here, we use unsupervised machine learning to modularize the transcriptome and quantitatively describe regulatory activi...
Autores principales: | Rychel, Kevin, Sastry, Anand V., Palsson, Bernhard O. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7732839/ https://www.ncbi.nlm.nih.gov/pubmed/33311500 http://dx.doi.org/10.1038/s41467-020-20153-9 |
Ejemplares similares
-
Machine learning uncovers the Pseudomonas syringae transcriptome in microbial communities and during infection
por: Bajpe, Heera, et al.
Publicado: (2023) -
Machine learning from Pseudomonas aeruginosa transcriptomes identifies independently modulated sets of genes associated with known transcriptional regulators
por: Rajput, Akanksha, et al.
Publicado: (2022) -
Machine Learning Uncovers a Data-Driven Transcriptional Regulatory Network for the Crenarchaeal Thermoacidophile Sulfolobus acidocaldarius
por: Chauhan, Siddharth M., et al.
Publicado: (2021) -
iModulonDB: a knowledgebase of microbial transcriptional regulation derived from machine learning
por: Rychel, Kevin, et al.
Publicado: (2020) -
The Escherichia coli transcriptome mostly consists of independently regulated modules
por: Sastry, Anand V., et al.
Publicado: (2019)