Cargando…
Symmetry prediction and knowledge discovery from X-ray diffraction patterns using an interpretable machine learning approach
Determination of crystal system and space group in the initial stages of crystal structure analysis forms a bottleneck in material science workflow that often requires manual tuning. Herein we propose a machine-learning (ML)-based approach for crystal system and space group classification based on p...
Autores principales: | Suzuki, Yuta, Hino, Hideitsu, Hawai, Takafumi, Saito, Kotaro, Kotsugi, Masato, Ono, Kanta |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7732852/ https://www.ncbi.nlm.nih.gov/pubmed/33311555 http://dx.doi.org/10.1038/s41598-020-77474-4 |
Ejemplares similares
-
Accelerating small-angle scattering experiments on anisotropic samples using kernel density estimation
por: Saito, Kotaro, et al.
Publicado: (2019) -
The interpretation of x-ray diffraction photographs
por: Henry, N F M, et al.
Publicado: (1951) -
α-Geodesical Skew Divergence
por: Kimura, Masanari, et al.
Publicado: (2021) -
Harnessing interpretable and unsupervised machine learning to address big data from modern X-ray diffraction
por: Venderley, Jordan, et al.
Publicado: (2022) -
Indexing grazing-incidence X-ray diffraction patterns of thin films: lattices of higher symmetry
por: Simbrunner, Josef, et al.
Publicado: (2019)