Cargando…
Automatic seizure detection based on imaged-EEG signals through fully convolutional networks
Seizure detection is a routine process in epilepsy units requiring manual intervention of well-trained specialists. This process could be extensive, inefficient and time-consuming, especially for long term recordings. We proposed an automatic method to detect epileptic seizures using an imaged-EEG r...
Autores principales: | Gómez, Catalina, Arbeláez, Pablo, Navarrete, Miguel, Alvarado-Rojas, Catalina, Le Van Quyen, Michel, Valderrama, Mario |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7732993/ https://www.ncbi.nlm.nih.gov/pubmed/33311533 http://dx.doi.org/10.1038/s41598-020-78784-3 |
Ejemplares similares
-
RIPPLELAB: A Comprehensive Application for the Detection, Analysis and Classification of High Frequency Oscillations in Electroencephalographic Signals
por: Navarrete, Miguel, et al.
Publicado: (2016) -
Automatic Detection of Cone Photoreceptors With Fully Convolutional Networks
por: Hamwood, Jared, et al.
Publicado: (2019) -
Fundamental Dynamical Modes Underlying Human Brain Synchronization
por: Alvarado-Rojas, Catalina, et al.
Publicado: (2012) -
Fully automatic wound segmentation with deep convolutional neural networks
por: Wang, Chuanbo, et al.
Publicado: (2020) -
Efficient graph convolutional networks for seizure prediction using scalp EEG
por: Jia, Manhua, et al.
Publicado: (2022)