Cargando…
Generation of Sulfonylated Tetrazoles through an Iron-Catalyzed Multicomponent Reaction Involving Sulfur Dioxide
As a privileged motif, tetrazoles can be widely found in pharmaceuticals and materials science. Herein, a five-component reaction of cycloketone oxime esters, alkynes, DABCO·(SO(2))(2), and two molecules of trimethylsilyl azide under iron catalysis is developed, giving rise to a range of cyano-conta...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7733023/ https://www.ncbi.nlm.nih.gov/pubmed/33336165 http://dx.doi.org/10.1016/j.isci.2020.101872 |
Sumario: | As a privileged motif, tetrazoles can be widely found in pharmaceuticals and materials science. Herein, a five-component reaction of cycloketone oxime esters, alkynes, DABCO·(SO(2))(2), and two molecules of trimethylsilyl azide under iron catalysis is developed, giving rise to a range of cyano-containing sulfonylated tetrazoles in moderate to good yields. This multicomponent reaction exhibits excellent selectivity and enables the formation of multiple new chemical bonds in one pot. A possible mechanism involving azidosulfonylation of alkynes, C-C bond cleavage of both cycloketone oxime esters and alkynes, and [3 + 2] cycloaddition of trimethylsilyl azide and the nitrilium cation intermediate is proposed. Additionally, the potential of terminal alkynes acting as powerful synthons for the synthesis of tetrazoles in a radical initiated process is demonstrated for the first time. |
---|