Cargando…
Use of Latent Class Analysis and k-Means Clustering to Identify Complex Patient Profiles
IMPORTANCE: Medically complex patients are a heterogeneous group that contribute to a substantial proportion of health care costs. Coordinated efforts to improve care and reduce costs for this patient population have had limited success to date. OBJECTIVE: To define distinct patient clinical profile...
Autores principales: | Grant, Richard W., McCloskey, Jodi, Hatfield, Meghan, Uratsu, Connie, Ralston, James D., Bayliss, Elizabeth, Kennedy, Chris J. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American Medical Association
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7733156/ https://www.ncbi.nlm.nih.gov/pubmed/33306116 http://dx.doi.org/10.1001/jamanetworkopen.2020.29068 |
Ejemplares similares
-
Accounting for Social Risk Does not Eliminate Race/Ethnic Disparities in COVID-19 Infection Among Insured Adults: a Cohort Study
por: McCloskey, Jodi K., et al.
Publicado: (2022) -
Use of latent profile analysis and k-means clustering to identify student anxiety profiles
por: Liu, Fang, et al.
Publicado: (2022) -
Correction: Use of latent profile analysis and k-means clustering to identify student anxiety profiles
por: Liu, Fang, et al.
Publicado: (2022) -
Statistical Methods for Latent Class Quantitative Trait Loci Mapping
por: Ye, Shuyun, et al.
Publicado: (2017) -
Using latent class analysis to identify clinical features of patients with occlusive myocardial infarction: Preangiogram prediction remains difficult
por: Knoery, Charles, et al.
Publicado: (2022)