Cargando…

Identifying experts in the field of visual arts using oculomotor signals

In this article, we aimed to present a system that enables identifying experts in the field of visual art based on oculographic data. The difference between the two classified groups of tested people concerns formal education. At first, regions of interest (ROI) were determined based on position of...

Descripción completa

Detalles Bibliográficos
Autores principales: Kołodziej, Marcin, Majkowski, Andrzej, Rak, Remigiusz J., Francuz, Piotr, Augustynowicz, Paweł
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Bern Open Publishing 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7733311/
https://www.ncbi.nlm.nih.gov/pubmed/33828698
http://dx.doi.org/10.16910/jemr.11.3.3
Descripción
Sumario:In this article, we aimed to present a system that enables identifying experts in the field of visual art based on oculographic data. The difference between the two classified groups of tested people concerns formal education. At first, regions of interest (ROI) were determined based on position of fixations on the viewed picture. For each ROI, a set of features (the number of fixations and their durations) was calculated that enabled distinguishing professionals from laymen. The developed system was tested for several dozen of users. We used k-nearest neighbors (k-NN) and support vector machine (SVM) classifiers for classification process. Classification results proved that it is possible to distinguish experts from non-experts.