Cargando…

Cross-modal music integration in expert memory: Evidence from eye movements

The study investigated the cross-modal integration hypothesis for expert musicians using eye tracking. Twenty randomized excerpts of classical music were presented in two modes (auditory and visual), at the same time (simultaneously) or successively (sequentially). Musicians (N = 53, 26 experts and...

Descripción completa

Detalles Bibliográficos
Autores principales: Drai-Zerbib, Véronique, Baccino, Thierry
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Bern Open Publishing 2018
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7733353/
https://www.ncbi.nlm.nih.gov/pubmed/33828687
http://dx.doi.org/10.16910/jemr.11.2.4
Descripción
Sumario:The study investigated the cross-modal integration hypothesis for expert musicians using eye tracking. Twenty randomized excerpts of classical music were presented in two modes (auditory and visual), at the same time (simultaneously) or successively (sequentially). Musicians (N = 53, 26 experts and 27 non-experts) were asked to detect a note modified between the auditory and visual versions, either in the same major/minor key or violating the key. Experts carried out the task faster and with greater accuracy than non-experts. Sequential presentation was more difficult than simultaneous (longer fixations and higher error rates) and the modified notes were more easily detected when violating the key (fewer errors), but with longer fixations (speed/accuracy trade-off strategy). Experts detected the modified note faster, especially in the simultaneous condition in which cross-modal integration may be applied. These results support the hypothesis that the main difference between experts and non-experts derives from the difference in knowledge structures in memory built over time with practice. They also suggest that these high-level knowledge structures in memory contain harmony and tonal rules, arguing in favour of cross-modal integration capacities for experts, which are related to and can be explained by the long-term working memory (LTWM) model of expert memory (e.g. (18; 22).