Cargando…
Quantifying and addressing the prevalence and bias of study designs in the environmental and social sciences
Building trust in science and evidence-based decision-making depends heavily on the credibility of studies and their findings. Researchers employ many different study designs that vary in their risk of bias to evaluate the true effect of interventions or impacts. Here, we empirically quantify, on a...
Autores principales: | , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7733498/ https://www.ncbi.nlm.nih.gov/pubmed/33311448 http://dx.doi.org/10.1038/s41467-020-20142-y |
_version_ | 1783622285416988672 |
---|---|
author | Christie, Alec P. Abecasis, David Adjeroud, Mehdi Alonso, Juan C. Amano, Tatsuya Anton, Alvaro Baldigo, Barry P. Barrientos, Rafael Bicknell, Jake E. Buhl, Deborah A. Cebrian, Just Ceia, Ricardo S. Cibils-Martina, Luciana Clarke, Sarah Claudet, Joachim Craig, Michael D. Davoult, Dominique De Backer, Annelies Donovan, Mary K. Eddy, Tyler D. França, Filipe M. Gardner, Jonathan P. A. Harris, Bradley P. Huusko, Ari Jones, Ian L. Kelaher, Brendan P. Kotiaho, Janne S. López-Baucells, Adrià Major, Heather L. Mäki-Petäys, Aki Martín, Beatriz Martín, Carlos A. Martin, Philip A. Mateos-Molina, Daniel McConnaughey, Robert A. Meroni, Michele Meyer, Christoph F. J. Mills, Kade Montefalcone, Monica Noreika, Norbertas Palacín, Carlos Pande, Anjali Pitcher, C. Roland Ponce, Carlos Rinella, Matt Rocha, Ricardo Ruiz-Delgado, María C. Schmitter-Soto, Juan J. Shaffer, Jill A. Sharma, Shailesh Sher, Anna A. Stagnol, Doriane Stanley, Thomas R. Stokesbury, Kevin D. E. Torres, Aurora Tully, Oliver Vehanen, Teppo Watts, Corinne Zhao, Qingyuan Sutherland, William J. |
author_facet | Christie, Alec P. Abecasis, David Adjeroud, Mehdi Alonso, Juan C. Amano, Tatsuya Anton, Alvaro Baldigo, Barry P. Barrientos, Rafael Bicknell, Jake E. Buhl, Deborah A. Cebrian, Just Ceia, Ricardo S. Cibils-Martina, Luciana Clarke, Sarah Claudet, Joachim Craig, Michael D. Davoult, Dominique De Backer, Annelies Donovan, Mary K. Eddy, Tyler D. França, Filipe M. Gardner, Jonathan P. A. Harris, Bradley P. Huusko, Ari Jones, Ian L. Kelaher, Brendan P. Kotiaho, Janne S. López-Baucells, Adrià Major, Heather L. Mäki-Petäys, Aki Martín, Beatriz Martín, Carlos A. Martin, Philip A. Mateos-Molina, Daniel McConnaughey, Robert A. Meroni, Michele Meyer, Christoph F. J. Mills, Kade Montefalcone, Monica Noreika, Norbertas Palacín, Carlos Pande, Anjali Pitcher, C. Roland Ponce, Carlos Rinella, Matt Rocha, Ricardo Ruiz-Delgado, María C. Schmitter-Soto, Juan J. Shaffer, Jill A. Sharma, Shailesh Sher, Anna A. Stagnol, Doriane Stanley, Thomas R. Stokesbury, Kevin D. E. Torres, Aurora Tully, Oliver Vehanen, Teppo Watts, Corinne Zhao, Qingyuan Sutherland, William J. |
author_sort | Christie, Alec P. |
collection | PubMed |
description | Building trust in science and evidence-based decision-making depends heavily on the credibility of studies and their findings. Researchers employ many different study designs that vary in their risk of bias to evaluate the true effect of interventions or impacts. Here, we empirically quantify, on a large scale, the prevalence of different study designs and the magnitude of bias in their estimates. Randomised designs and controlled observational designs with pre-intervention sampling were used by just 23% of intervention studies in biodiversity conservation, and 36% of intervention studies in social science. We demonstrate, through pairwise within-study comparisons across 49 environmental datasets, that these types of designs usually give less biased estimates than simpler observational designs. We propose a model-based approach to combine study estimates that may suffer from different levels of study design bias, discuss the implications for evidence synthesis, and how to facilitate the use of more credible study designs. |
format | Online Article Text |
id | pubmed-7733498 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | Nature Publishing Group UK |
record_format | MEDLINE/PubMed |
spelling | pubmed-77334982020-12-17 Quantifying and addressing the prevalence and bias of study designs in the environmental and social sciences Christie, Alec P. Abecasis, David Adjeroud, Mehdi Alonso, Juan C. Amano, Tatsuya Anton, Alvaro Baldigo, Barry P. Barrientos, Rafael Bicknell, Jake E. Buhl, Deborah A. Cebrian, Just Ceia, Ricardo S. Cibils-Martina, Luciana Clarke, Sarah Claudet, Joachim Craig, Michael D. Davoult, Dominique De Backer, Annelies Donovan, Mary K. Eddy, Tyler D. França, Filipe M. Gardner, Jonathan P. A. Harris, Bradley P. Huusko, Ari Jones, Ian L. Kelaher, Brendan P. Kotiaho, Janne S. López-Baucells, Adrià Major, Heather L. Mäki-Petäys, Aki Martín, Beatriz Martín, Carlos A. Martin, Philip A. Mateos-Molina, Daniel McConnaughey, Robert A. Meroni, Michele Meyer, Christoph F. J. Mills, Kade Montefalcone, Monica Noreika, Norbertas Palacín, Carlos Pande, Anjali Pitcher, C. Roland Ponce, Carlos Rinella, Matt Rocha, Ricardo Ruiz-Delgado, María C. Schmitter-Soto, Juan J. Shaffer, Jill A. Sharma, Shailesh Sher, Anna A. Stagnol, Doriane Stanley, Thomas R. Stokesbury, Kevin D. E. Torres, Aurora Tully, Oliver Vehanen, Teppo Watts, Corinne Zhao, Qingyuan Sutherland, William J. Nat Commun Article Building trust in science and evidence-based decision-making depends heavily on the credibility of studies and their findings. Researchers employ many different study designs that vary in their risk of bias to evaluate the true effect of interventions or impacts. Here, we empirically quantify, on a large scale, the prevalence of different study designs and the magnitude of bias in their estimates. Randomised designs and controlled observational designs with pre-intervention sampling were used by just 23% of intervention studies in biodiversity conservation, and 36% of intervention studies in social science. We demonstrate, through pairwise within-study comparisons across 49 environmental datasets, that these types of designs usually give less biased estimates than simpler observational designs. We propose a model-based approach to combine study estimates that may suffer from different levels of study design bias, discuss the implications for evidence synthesis, and how to facilitate the use of more credible study designs. Nature Publishing Group UK 2020-12-11 /pmc/articles/PMC7733498/ /pubmed/33311448 http://dx.doi.org/10.1038/s41467-020-20142-y Text en © The Author(s) 2020 Open Access This article is licensed under a Creative Commons Attribution 4.0 International License, which permits use, sharing, adaptation, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made. The images or other third party material in this article are included in the article’s Creative Commons license, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons license and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this license, visit http://creativecommons.org/licenses/by/4.0/. |
spellingShingle | Article Christie, Alec P. Abecasis, David Adjeroud, Mehdi Alonso, Juan C. Amano, Tatsuya Anton, Alvaro Baldigo, Barry P. Barrientos, Rafael Bicknell, Jake E. Buhl, Deborah A. Cebrian, Just Ceia, Ricardo S. Cibils-Martina, Luciana Clarke, Sarah Claudet, Joachim Craig, Michael D. Davoult, Dominique De Backer, Annelies Donovan, Mary K. Eddy, Tyler D. França, Filipe M. Gardner, Jonathan P. A. Harris, Bradley P. Huusko, Ari Jones, Ian L. Kelaher, Brendan P. Kotiaho, Janne S. López-Baucells, Adrià Major, Heather L. Mäki-Petäys, Aki Martín, Beatriz Martín, Carlos A. Martin, Philip A. Mateos-Molina, Daniel McConnaughey, Robert A. Meroni, Michele Meyer, Christoph F. J. Mills, Kade Montefalcone, Monica Noreika, Norbertas Palacín, Carlos Pande, Anjali Pitcher, C. Roland Ponce, Carlos Rinella, Matt Rocha, Ricardo Ruiz-Delgado, María C. Schmitter-Soto, Juan J. Shaffer, Jill A. Sharma, Shailesh Sher, Anna A. Stagnol, Doriane Stanley, Thomas R. Stokesbury, Kevin D. E. Torres, Aurora Tully, Oliver Vehanen, Teppo Watts, Corinne Zhao, Qingyuan Sutherland, William J. Quantifying and addressing the prevalence and bias of study designs in the environmental and social sciences |
title | Quantifying and addressing the prevalence and bias of study designs in the environmental and social sciences |
title_full | Quantifying and addressing the prevalence and bias of study designs in the environmental and social sciences |
title_fullStr | Quantifying and addressing the prevalence and bias of study designs in the environmental and social sciences |
title_full_unstemmed | Quantifying and addressing the prevalence and bias of study designs in the environmental and social sciences |
title_short | Quantifying and addressing the prevalence and bias of study designs in the environmental and social sciences |
title_sort | quantifying and addressing the prevalence and bias of study designs in the environmental and social sciences |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7733498/ https://www.ncbi.nlm.nih.gov/pubmed/33311448 http://dx.doi.org/10.1038/s41467-020-20142-y |
work_keys_str_mv | AT christiealecp quantifyingandaddressingtheprevalenceandbiasofstudydesignsintheenvironmentalandsocialsciences AT abecasisdavid quantifyingandaddressingtheprevalenceandbiasofstudydesignsintheenvironmentalandsocialsciences AT adjeroudmehdi quantifyingandaddressingtheprevalenceandbiasofstudydesignsintheenvironmentalandsocialsciences AT alonsojuanc quantifyingandaddressingtheprevalenceandbiasofstudydesignsintheenvironmentalandsocialsciences AT amanotatsuya quantifyingandaddressingtheprevalenceandbiasofstudydesignsintheenvironmentalandsocialsciences AT antonalvaro quantifyingandaddressingtheprevalenceandbiasofstudydesignsintheenvironmentalandsocialsciences AT baldigobarryp quantifyingandaddressingtheprevalenceandbiasofstudydesignsintheenvironmentalandsocialsciences AT barrientosrafael quantifyingandaddressingtheprevalenceandbiasofstudydesignsintheenvironmentalandsocialsciences AT bicknelljakee quantifyingandaddressingtheprevalenceandbiasofstudydesignsintheenvironmentalandsocialsciences AT buhldeboraha quantifyingandaddressingtheprevalenceandbiasofstudydesignsintheenvironmentalandsocialsciences AT cebrianjust quantifyingandaddressingtheprevalenceandbiasofstudydesignsintheenvironmentalandsocialsciences AT ceiaricardos quantifyingandaddressingtheprevalenceandbiasofstudydesignsintheenvironmentalandsocialsciences AT cibilsmartinaluciana quantifyingandaddressingtheprevalenceandbiasofstudydesignsintheenvironmentalandsocialsciences AT clarkesarah quantifyingandaddressingtheprevalenceandbiasofstudydesignsintheenvironmentalandsocialsciences AT claudetjoachim quantifyingandaddressingtheprevalenceandbiasofstudydesignsintheenvironmentalandsocialsciences AT craigmichaeld quantifyingandaddressingtheprevalenceandbiasofstudydesignsintheenvironmentalandsocialsciences AT davoultdominique quantifyingandaddressingtheprevalenceandbiasofstudydesignsintheenvironmentalandsocialsciences AT debackerannelies quantifyingandaddressingtheprevalenceandbiasofstudydesignsintheenvironmentalandsocialsciences AT donovanmaryk quantifyingandaddressingtheprevalenceandbiasofstudydesignsintheenvironmentalandsocialsciences AT eddytylerd quantifyingandaddressingtheprevalenceandbiasofstudydesignsintheenvironmentalandsocialsciences AT francafilipem quantifyingandaddressingtheprevalenceandbiasofstudydesignsintheenvironmentalandsocialsciences AT gardnerjonathanpa quantifyingandaddressingtheprevalenceandbiasofstudydesignsintheenvironmentalandsocialsciences AT harrisbradleyp quantifyingandaddressingtheprevalenceandbiasofstudydesignsintheenvironmentalandsocialsciences AT huuskoari quantifyingandaddressingtheprevalenceandbiasofstudydesignsintheenvironmentalandsocialsciences AT jonesianl quantifyingandaddressingtheprevalenceandbiasofstudydesignsintheenvironmentalandsocialsciences AT kelaherbrendanp quantifyingandaddressingtheprevalenceandbiasofstudydesignsintheenvironmentalandsocialsciences AT kotiahojannes quantifyingandaddressingtheprevalenceandbiasofstudydesignsintheenvironmentalandsocialsciences AT lopezbaucellsadria quantifyingandaddressingtheprevalenceandbiasofstudydesignsintheenvironmentalandsocialsciences AT majorheatherl quantifyingandaddressingtheprevalenceandbiasofstudydesignsintheenvironmentalandsocialsciences AT makipetaysaki quantifyingandaddressingtheprevalenceandbiasofstudydesignsintheenvironmentalandsocialsciences AT martinbeatriz quantifyingandaddressingtheprevalenceandbiasofstudydesignsintheenvironmentalandsocialsciences AT martincarlosa quantifyingandaddressingtheprevalenceandbiasofstudydesignsintheenvironmentalandsocialsciences AT martinphilipa quantifyingandaddressingtheprevalenceandbiasofstudydesignsintheenvironmentalandsocialsciences AT mateosmolinadaniel quantifyingandaddressingtheprevalenceandbiasofstudydesignsintheenvironmentalandsocialsciences AT mcconnaugheyroberta quantifyingandaddressingtheprevalenceandbiasofstudydesignsintheenvironmentalandsocialsciences AT meronimichele quantifyingandaddressingtheprevalenceandbiasofstudydesignsintheenvironmentalandsocialsciences AT meyerchristophfj quantifyingandaddressingtheprevalenceandbiasofstudydesignsintheenvironmentalandsocialsciences AT millskade quantifyingandaddressingtheprevalenceandbiasofstudydesignsintheenvironmentalandsocialsciences AT montefalconemonica quantifyingandaddressingtheprevalenceandbiasofstudydesignsintheenvironmentalandsocialsciences AT noreikanorbertas quantifyingandaddressingtheprevalenceandbiasofstudydesignsintheenvironmentalandsocialsciences AT palacincarlos quantifyingandaddressingtheprevalenceandbiasofstudydesignsintheenvironmentalandsocialsciences AT pandeanjali quantifyingandaddressingtheprevalenceandbiasofstudydesignsintheenvironmentalandsocialsciences AT pitchercroland quantifyingandaddressingtheprevalenceandbiasofstudydesignsintheenvironmentalandsocialsciences AT poncecarlos quantifyingandaddressingtheprevalenceandbiasofstudydesignsintheenvironmentalandsocialsciences AT rinellamatt quantifyingandaddressingtheprevalenceandbiasofstudydesignsintheenvironmentalandsocialsciences AT rocharicardo quantifyingandaddressingtheprevalenceandbiasofstudydesignsintheenvironmentalandsocialsciences AT ruizdelgadomariac quantifyingandaddressingtheprevalenceandbiasofstudydesignsintheenvironmentalandsocialsciences AT schmittersotojuanj quantifyingandaddressingtheprevalenceandbiasofstudydesignsintheenvironmentalandsocialsciences AT shafferjilla quantifyingandaddressingtheprevalenceandbiasofstudydesignsintheenvironmentalandsocialsciences AT sharmashailesh quantifyingandaddressingtheprevalenceandbiasofstudydesignsintheenvironmentalandsocialsciences AT sherannaa quantifyingandaddressingtheprevalenceandbiasofstudydesignsintheenvironmentalandsocialsciences AT stagnoldoriane quantifyingandaddressingtheprevalenceandbiasofstudydesignsintheenvironmentalandsocialsciences AT stanleythomasr quantifyingandaddressingtheprevalenceandbiasofstudydesignsintheenvironmentalandsocialsciences AT stokesburykevinde quantifyingandaddressingtheprevalenceandbiasofstudydesignsintheenvironmentalandsocialsciences AT torresaurora quantifyingandaddressingtheprevalenceandbiasofstudydesignsintheenvironmentalandsocialsciences AT tullyoliver quantifyingandaddressingtheprevalenceandbiasofstudydesignsintheenvironmentalandsocialsciences AT vehanenteppo quantifyingandaddressingtheprevalenceandbiasofstudydesignsintheenvironmentalandsocialsciences AT wattscorinne quantifyingandaddressingtheprevalenceandbiasofstudydesignsintheenvironmentalandsocialsciences AT zhaoqingyuan quantifyingandaddressingtheprevalenceandbiasofstudydesignsintheenvironmentalandsocialsciences AT sutherlandwilliamj quantifyingandaddressingtheprevalenceandbiasofstudydesignsintheenvironmentalandsocialsciences |