Cargando…
Deep learning-based cross-classifications reveal conserved spatial behaviors within tumor histological images
Histopathological images are a rich but incompletely explored data type for studying cancer. Manual inspection is time consuming, making it challenging to use for image data mining. Here we show that convolutional neural networks (CNNs) can be systematically applied across cancer types, enabling com...
Autores principales: | Noorbakhsh, Javad, Farahmand, Saman, Foroughi pour, Ali, Namburi, Sandeep, Caruana, Dennis, Rimm, David, Soltanieh-ha, Mohammad, Zarringhalam, Kourosh, Chuang, Jeffrey H. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7733499/ https://www.ncbi.nlm.nih.gov/pubmed/33311458 http://dx.doi.org/10.1038/s41467-020-20030-5 |
Ejemplares similares
-
Deep learning trained on hematoxylin and eosin tumor region of Interest predicts HER2 status and trastuzumab treatment response in HER2+ breast cancer
por: Farahmand, Saman, et al.
Publicado: (2022) -
Distribution-based measures of tumor heterogeneity are sensitive to mutation calling and lack strong clinical predictive power
por: Noorbakhsh, Javad, et al.
Publicado: (2018) -
Causal Inference Engine: a platform for directional gene set enrichment analysis and inference of active transcriptional regulators
por: Farahmand, Saman, et al.
Publicado: (2019) -
Deep learning features encode interpretable morphologies within histological images
por: Foroughi pour, Ali, et al.
Publicado: (2022) -
Comparative single-cell transcriptional atlases of Babesia species reveal conserved and species-specific expression profiles
por: Rezvani, Yasaman, et al.
Publicado: (2022)