Cargando…
A meta-learning approach for genomic survival analysis
RNA sequencing has emerged as a promising approach in cancer prognosis as sequencing data becomes more easily and affordably accessible. However, it remains challenging to build good predictive models especially when the sample size is limited and the number of features is high, which is a common si...
Autores principales: | Qiu, Yeping Lina, Zheng, Hong, Devos, Arnout, Selby, Heather, Gevaert, Olivier |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7733508/ https://www.ncbi.nlm.nih.gov/pubmed/33311484 http://dx.doi.org/10.1038/s41467-020-20167-3 |
Ejemplares similares
-
Genomic data imputation with variational auto-encoders
por: Qiu, Yeping Lina, et al.
Publicado: (2020) -
QOL-55. INTEGRATED MULTI-SCALE MODEL FOR PEDIATRIC BRAIN TUMOR SURVIVAL PREDICTION
por: Qiu, Yeping Lina, et al.
Publicado: (2020) -
Multimodal deep learning to predict prognosis in adult and pediatric brain tumors
por: Steyaert, Sandra, et al.
Publicado: (2023) -
Topological data analysis of thoracic radiographic images shows improved radiomics-based lung tumor histology prediction
por: Vandaele, Robin, et al.
Publicado: (2022) -
Deep learning with multimodal representation for pancancer prognosis prediction
por: Cheerla, Anika, et al.
Publicado: (2019)