Cargando…
Exploring physics of ferroelectric domain walls via Bayesian analysis of atomically resolved STEM data
The physics of ferroelectric domain walls is explored using the Bayesian inference analysis of atomically resolved STEM data. We demonstrate that domain wall profile shapes are ultimately sensitive to the nature of the order parameter in the material, including the functional form of Ginzburg-Landau...
Autores principales: | Nelson, Christopher T., Vasudevan, Rama K., Zhang, Xiaohang, Ziatdinov, Maxim, Eliseev, Eugene A., Takeuchi, Ichiro, Morozovska, Anna N., Kalinin, Sergei V. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Nature Publishing Group UK
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7733522/ https://www.ncbi.nlm.nih.gov/pubmed/33311492 http://dx.doi.org/10.1038/s41467-020-19907-2 |
Ejemplares similares
-
Autonomous scanning probe microscopy with hypothesis learning: Exploring the physics of domain switching in ferroelectric materials
por: Liu, Yongtao, et al.
Publicado: (2023) -
Exploring Physics of Ferroelectric Domain Walls in Real Time: Deep Learning Enabled Scanning Probe Microscopy
por: Liu, Yongtao, et al.
Publicado: (2022) -
Field enhancement of electronic conductance at ferroelectric domain walls
por: Vasudevan, Rama K., et al.
Publicado: (2017) -
Mesoscopic theory of defect ordering–disordering transitions in thin oxide films
por: Morozovska, Anna N., et al.
Publicado: (2020) -
Building and exploring libraries of atomic defects in graphene: Scanning transmission electron and scanning tunneling microscopy study
por: Ziatdinov, Maxim, et al.
Publicado: (2019)