Cargando…
Local conformal autoencoder for standardized data coordinates
We propose a local conformal autoencoder (LOCA) for standardized data coordinates. LOCA is a deep learning-based method for obtaining standardized data coordinates from scientific measurements. Data observations are modeled as samples from an unknown, nonlinear deformation of an underlying Riemannia...
Autores principales: | Peterfreund, Erez, Lindenbaum, Ofir, Dietrich, Felix, Bertalan, Tom, Gavish, Matan, Kevrekidis, Ioannis G., Coifman, Ronald R. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
National Academy of Sciences
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7733838/ https://www.ncbi.nlm.nih.gov/pubmed/33229581 http://dx.doi.org/10.1073/pnas.2014627117 |
Ejemplares similares
-
The Spectral Underpinning of word2vec
por: Jaffe, Ariel, et al.
Publicado: (2020) -
Learning emergent partial differential equations in a learned emergent space
por: Kemeth, Felix P., et al.
Publicado: (2022) -
Near-optimal matrix recovery from random linear measurements
por: Romanov, Elad, et al.
Publicado: (2018) -
Explore Protein Conformational Space With Variational Autoencoder
por: Tian, Hao, et al.
Publicado: (2021) -
On the parameter combinations that matter and on those that do not: data-driven studies of parameter (non)identifiability
por: Evangelou, Nikolaos, et al.
Publicado: (2022)