Cargando…
Parallel Factor Analysis Enables Quantification and Identification of Highly Convolved Data-Independent-Acquired Protein Spectra
High-throughput data-independent acquisition (DIA) is the method of choice for quantitative proteomics, combining the best practices of targeted and shotgun approaches. The resultant DIA spectra are, however, highly convolved and with no direct precursor-fragment correspondence, complicating biologi...
Autores principales: | Buric, Filip, Zrimec, Jan, Zelezniak, Aleksej |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7733873/ https://www.ncbi.nlm.nih.gov/pubmed/33336195 http://dx.doi.org/10.1016/j.patter.2020.100137 |
Ejemplares similares
-
Learning the Regulatory Code of Gene Expression
por: Zrimec, Jan, et al.
Publicado: (2021) -
Learning deep representations of enzyme thermal adaptation
por: Li, Gang, et al.
Publicado: (2022) -
Convolver Design and Convolve-Accumulate Unit Design for Low-Power Edge Computing †
por: Kao, Hsu-Yu, et al.
Publicado: (2021) -
Deep learning suggests that gene expression is encoded in all parts of a co-evolving interacting gene regulatory structure
por: Zrimec, Jan, et al.
Publicado: (2020) -
metaGEM: reconstruction of genome scale metabolic models directly from metagenomes
por: Zorrilla, Francisco, et al.
Publicado: (2021)