Cargando…
A Blueprint for Identifying Phenotypes and Drug Targets in Complex Disorders with Empirical Dynamics
A central challenge in medicine is translating from observational understanding to mechanistic understanding, where some observations are recognized as causes for the others. This can lead not only to new treatments and understanding, but also to recognition of novel phenotypes. Here, we apply a col...
Autores principales: | , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7733879/ https://www.ncbi.nlm.nih.gov/pubmed/33336196 http://dx.doi.org/10.1016/j.patter.2020.100138 |
_version_ | 1783622354578964480 |
---|---|
author | Krieger, Madison S. Moreau, Joshua M. Zhang, Haiyu Chien, May Zehnder, James L. Craig, Morgan |
author_facet | Krieger, Madison S. Moreau, Joshua M. Zhang, Haiyu Chien, May Zehnder, James L. Craig, Morgan |
author_sort | Krieger, Madison S. |
collection | PubMed |
description | A central challenge in medicine is translating from observational understanding to mechanistic understanding, where some observations are recognized as causes for the others. This can lead not only to new treatments and understanding, but also to recognition of novel phenotypes. Here, we apply a collection of mathematical techniques (empirical dynamics), which infer mechanistic networks in a model-free manner from longitudinal data, to hematopoiesis. Our study consists of three subjects with markers for cyclic thrombocytopenia, in which multiple cells and proteins undergo abnormal oscillations. One subject has atypical markers and may represent a rare phenotype. Our analyses support this contention, and also lend new evidence to a theory for the cause of this disorder. Simulations of an intervention yield encouraging results, even when applied to patient data outside our three subjects. These successes suggest that this blueprint has broader applicability in understanding and treating complex disorders. |
format | Online Article Text |
id | pubmed-7733879 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | Elsevier |
record_format | MEDLINE/PubMed |
spelling | pubmed-77338792020-12-16 A Blueprint for Identifying Phenotypes and Drug Targets in Complex Disorders with Empirical Dynamics Krieger, Madison S. Moreau, Joshua M. Zhang, Haiyu Chien, May Zehnder, James L. Craig, Morgan Patterns (N Y) Article A central challenge in medicine is translating from observational understanding to mechanistic understanding, where some observations are recognized as causes for the others. This can lead not only to new treatments and understanding, but also to recognition of novel phenotypes. Here, we apply a collection of mathematical techniques (empirical dynamics), which infer mechanistic networks in a model-free manner from longitudinal data, to hematopoiesis. Our study consists of three subjects with markers for cyclic thrombocytopenia, in which multiple cells and proteins undergo abnormal oscillations. One subject has atypical markers and may represent a rare phenotype. Our analyses support this contention, and also lend new evidence to a theory for the cause of this disorder. Simulations of an intervention yield encouraging results, even when applied to patient data outside our three subjects. These successes suggest that this blueprint has broader applicability in understanding and treating complex disorders. Elsevier 2020-11-06 /pmc/articles/PMC7733879/ /pubmed/33336196 http://dx.doi.org/10.1016/j.patter.2020.100138 Text en © 2020 The Authors http://creativecommons.org/licenses/by-nc-nd/4.0/ This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/). |
spellingShingle | Article Krieger, Madison S. Moreau, Joshua M. Zhang, Haiyu Chien, May Zehnder, James L. Craig, Morgan A Blueprint for Identifying Phenotypes and Drug Targets in Complex Disorders with Empirical Dynamics |
title | A Blueprint for Identifying Phenotypes and Drug Targets in Complex Disorders with Empirical Dynamics |
title_full | A Blueprint for Identifying Phenotypes and Drug Targets in Complex Disorders with Empirical Dynamics |
title_fullStr | A Blueprint for Identifying Phenotypes and Drug Targets in Complex Disorders with Empirical Dynamics |
title_full_unstemmed | A Blueprint for Identifying Phenotypes and Drug Targets in Complex Disorders with Empirical Dynamics |
title_short | A Blueprint for Identifying Phenotypes and Drug Targets in Complex Disorders with Empirical Dynamics |
title_sort | blueprint for identifying phenotypes and drug targets in complex disorders with empirical dynamics |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7733879/ https://www.ncbi.nlm.nih.gov/pubmed/33336196 http://dx.doi.org/10.1016/j.patter.2020.100138 |
work_keys_str_mv | AT kriegermadisons ablueprintforidentifyingphenotypesanddrugtargetsincomplexdisorderswithempiricaldynamics AT moreaujoshuam ablueprintforidentifyingphenotypesanddrugtargetsincomplexdisorderswithempiricaldynamics AT zhanghaiyu ablueprintforidentifyingphenotypesanddrugtargetsincomplexdisorderswithempiricaldynamics AT chienmay ablueprintforidentifyingphenotypesanddrugtargetsincomplexdisorderswithempiricaldynamics AT zehnderjamesl ablueprintforidentifyingphenotypesanddrugtargetsincomplexdisorderswithempiricaldynamics AT craigmorgan ablueprintforidentifyingphenotypesanddrugtargetsincomplexdisorderswithempiricaldynamics AT kriegermadisons blueprintforidentifyingphenotypesanddrugtargetsincomplexdisorderswithempiricaldynamics AT moreaujoshuam blueprintforidentifyingphenotypesanddrugtargetsincomplexdisorderswithempiricaldynamics AT zhanghaiyu blueprintforidentifyingphenotypesanddrugtargetsincomplexdisorderswithempiricaldynamics AT chienmay blueprintforidentifyingphenotypesanddrugtargetsincomplexdisorderswithempiricaldynamics AT zehnderjamesl blueprintforidentifyingphenotypesanddrugtargetsincomplexdisorderswithempiricaldynamics AT craigmorgan blueprintforidentifyingphenotypesanddrugtargetsincomplexdisorderswithempiricaldynamics |