Cargando…
scTenifoldNet: A Machine Learning Workflow for Constructing and Comparing Transcriptome-wide Gene Regulatory Networks from Single-Cell Data
We present scTenifoldNet—a machine learning workflow built upon principal-component regression, low-rank tensor approximation, and manifold alignment—for constructing and comparing single-cell gene regulatory networks (scGRNs) using data from single-cell RNA sequencing. scTenifoldNet reveals regulat...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7733883/ https://www.ncbi.nlm.nih.gov/pubmed/33336197 http://dx.doi.org/10.1016/j.patter.2020.100139 |
_version_ | 1783622355289899008 |
---|---|
author | Osorio, Daniel Zhong, Yan Li, Guanxun Huang, Jianhua Z. Cai, James J. |
author_facet | Osorio, Daniel Zhong, Yan Li, Guanxun Huang, Jianhua Z. Cai, James J. |
author_sort | Osorio, Daniel |
collection | PubMed |
description | We present scTenifoldNet—a machine learning workflow built upon principal-component regression, low-rank tensor approximation, and manifold alignment—for constructing and comparing single-cell gene regulatory networks (scGRNs) using data from single-cell RNA sequencing. scTenifoldNet reveals regulatory changes in gene expression between samples by comparing the constructed scGRNs. With real data, scTenifoldNet identifies specific gene expression programs associated with different biological processes, providing critical insights into the underlying mechanism of regulatory networks governing cellular transcriptional activities. |
format | Online Article Text |
id | pubmed-7733883 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | Elsevier |
record_format | MEDLINE/PubMed |
spelling | pubmed-77338832020-12-16 scTenifoldNet: A Machine Learning Workflow for Constructing and Comparing Transcriptome-wide Gene Regulatory Networks from Single-Cell Data Osorio, Daniel Zhong, Yan Li, Guanxun Huang, Jianhua Z. Cai, James J. Patterns (N Y) Descriptor We present scTenifoldNet—a machine learning workflow built upon principal-component regression, low-rank tensor approximation, and manifold alignment—for constructing and comparing single-cell gene regulatory networks (scGRNs) using data from single-cell RNA sequencing. scTenifoldNet reveals regulatory changes in gene expression between samples by comparing the constructed scGRNs. With real data, scTenifoldNet identifies specific gene expression programs associated with different biological processes, providing critical insights into the underlying mechanism of regulatory networks governing cellular transcriptional activities. Elsevier 2020-11-05 /pmc/articles/PMC7733883/ /pubmed/33336197 http://dx.doi.org/10.1016/j.patter.2020.100139 Text en © 2020 The Authors http://creativecommons.org/licenses/by-nc-nd/4.0/ This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/). |
spellingShingle | Descriptor Osorio, Daniel Zhong, Yan Li, Guanxun Huang, Jianhua Z. Cai, James J. scTenifoldNet: A Machine Learning Workflow for Constructing and Comparing Transcriptome-wide Gene Regulatory Networks from Single-Cell Data |
title | scTenifoldNet: A Machine Learning Workflow for Constructing and Comparing Transcriptome-wide Gene Regulatory Networks from Single-Cell Data |
title_full | scTenifoldNet: A Machine Learning Workflow for Constructing and Comparing Transcriptome-wide Gene Regulatory Networks from Single-Cell Data |
title_fullStr | scTenifoldNet: A Machine Learning Workflow for Constructing and Comparing Transcriptome-wide Gene Regulatory Networks from Single-Cell Data |
title_full_unstemmed | scTenifoldNet: A Machine Learning Workflow for Constructing and Comparing Transcriptome-wide Gene Regulatory Networks from Single-Cell Data |
title_short | scTenifoldNet: A Machine Learning Workflow for Constructing and Comparing Transcriptome-wide Gene Regulatory Networks from Single-Cell Data |
title_sort | sctenifoldnet: a machine learning workflow for constructing and comparing transcriptome-wide gene regulatory networks from single-cell data |
topic | Descriptor |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7733883/ https://www.ncbi.nlm.nih.gov/pubmed/33336197 http://dx.doi.org/10.1016/j.patter.2020.100139 |
work_keys_str_mv | AT osoriodaniel sctenifoldnetamachinelearningworkflowforconstructingandcomparingtranscriptomewidegeneregulatorynetworksfromsinglecelldata AT zhongyan sctenifoldnetamachinelearningworkflowforconstructingandcomparingtranscriptomewidegeneregulatorynetworksfromsinglecelldata AT liguanxun sctenifoldnetamachinelearningworkflowforconstructingandcomparingtranscriptomewidegeneregulatorynetworksfromsinglecelldata AT huangjianhuaz sctenifoldnetamachinelearningworkflowforconstructingandcomparingtranscriptomewidegeneregulatorynetworksfromsinglecelldata AT caijamesj sctenifoldnetamachinelearningworkflowforconstructingandcomparingtranscriptomewidegeneregulatorynetworksfromsinglecelldata |