Cargando…
scTenifoldNet: A Machine Learning Workflow for Constructing and Comparing Transcriptome-wide Gene Regulatory Networks from Single-Cell Data
We present scTenifoldNet—a machine learning workflow built upon principal-component regression, low-rank tensor approximation, and manifold alignment—for constructing and comparing single-cell gene regulatory networks (scGRNs) using data from single-cell RNA sequencing. scTenifoldNet reveals regulat...
Autores principales: | Osorio, Daniel, Zhong, Yan, Li, Guanxun, Huang, Jianhua Z., Cai, James J. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Elsevier
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7733883/ https://www.ncbi.nlm.nih.gov/pubmed/33336197 http://dx.doi.org/10.1016/j.patter.2020.100139 |
Ejemplares similares
-
scTenifoldKnk: An efficient virtual knockout tool for gene function predictions via single-cell gene regulatory network perturbation
por: Osorio, Daniel, et al.
Publicado: (2022) -
BIAFLOWS: A Collaborative Framework to Reproducibly Deploy and Benchmark Bioimage Analysis Workflows
por: Rubens, Ulysse, et al.
Publicado: (2020) -
Interactive analysis of single-cell data using flexible workflows with SCTK2
por: Wang, Yichen, et al.
Publicado: (2023) -
Compendiums of cancer transcriptomes for machine learning applications
por: Lim, Su Bin, et al.
Publicado: (2019) -
Transcriptome-wide analysis of a baculovirus using nanopore sequencing
por: Boldogkői, Zsolt, et al.
Publicado: (2018)