Cargando…
Multi-Omic Data Integration Allows Baseline Immune Signatures to Predict Hepatitis B Vaccine Response in a Small Cohort
BACKGROUND: Vaccination remains one of the most effective means of reducing the burden of infectious diseases globally. Improving our understanding of the molecular basis for effective vaccine response is of paramount importance if we are to ensure the success of future vaccine development efforts....
Autores principales: | , , , , , , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7734088/ https://www.ncbi.nlm.nih.gov/pubmed/33329547 http://dx.doi.org/10.3389/fimmu.2020.578801 |
_version_ | 1783622397907173376 |
---|---|
author | Shannon, Casey P. Blimkie, Travis M. Ben-Othman, Rym Gladish, Nicole Amenyogbe, Nelly Drissler, Sibyl Edgar, Rachel D. Chan, Queenie Krajden, Mel Foster, Leonard J. Kobor, Michael S. Mohn, William W. Brinkman, Ryan R. Le Cao, Kim-Anh Scheuermann, Richard H. Tebbutt, Scott J. Hancock, Robert E.W. Koff, Wayne C. Kollmann, Tobias R. Sadarangani, Manish Lee, Amy Huei-Yi |
author_facet | Shannon, Casey P. Blimkie, Travis M. Ben-Othman, Rym Gladish, Nicole Amenyogbe, Nelly Drissler, Sibyl Edgar, Rachel D. Chan, Queenie Krajden, Mel Foster, Leonard J. Kobor, Michael S. Mohn, William W. Brinkman, Ryan R. Le Cao, Kim-Anh Scheuermann, Richard H. Tebbutt, Scott J. Hancock, Robert E.W. Koff, Wayne C. Kollmann, Tobias R. Sadarangani, Manish Lee, Amy Huei-Yi |
author_sort | Shannon, Casey P. |
collection | PubMed |
description | BACKGROUND: Vaccination remains one of the most effective means of reducing the burden of infectious diseases globally. Improving our understanding of the molecular basis for effective vaccine response is of paramount importance if we are to ensure the success of future vaccine development efforts. METHODS: We applied cutting edge multi-omics approaches to extensively characterize temporal molecular responses following vaccination with hepatitis B virus (HBV) vaccine. Data were integrated across cellular, epigenomic, transcriptomic, proteomic, and fecal microbiome profiles, and correlated to final HBV antibody titres. RESULTS: Using both an unsupervised molecular-interaction network integration method (NetworkAnalyst) and a data-driven integration approach (DIABLO), we uncovered baseline molecular patterns and pathways associated with more effective vaccine responses to HBV. Biological associations were unravelled, with signalling pathways such as JAK-STAT and interleukin signalling, Toll-like receptor cascades, interferon signalling, and Th17 cell differentiation emerging as important pre-vaccination modulators of response. CONCLUSION: This study provides further evidence that baseline cellular and molecular characteristics of an individual’s immune system influence vaccine responses, and highlights the utility of integrating information across many parallel molecular datasets. |
format | Online Article Text |
id | pubmed-7734088 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | Frontiers Media S.A. |
record_format | MEDLINE/PubMed |
spelling | pubmed-77340882020-12-15 Multi-Omic Data Integration Allows Baseline Immune Signatures to Predict Hepatitis B Vaccine Response in a Small Cohort Shannon, Casey P. Blimkie, Travis M. Ben-Othman, Rym Gladish, Nicole Amenyogbe, Nelly Drissler, Sibyl Edgar, Rachel D. Chan, Queenie Krajden, Mel Foster, Leonard J. Kobor, Michael S. Mohn, William W. Brinkman, Ryan R. Le Cao, Kim-Anh Scheuermann, Richard H. Tebbutt, Scott J. Hancock, Robert E.W. Koff, Wayne C. Kollmann, Tobias R. Sadarangani, Manish Lee, Amy Huei-Yi Front Immunol Immunology BACKGROUND: Vaccination remains one of the most effective means of reducing the burden of infectious diseases globally. Improving our understanding of the molecular basis for effective vaccine response is of paramount importance if we are to ensure the success of future vaccine development efforts. METHODS: We applied cutting edge multi-omics approaches to extensively characterize temporal molecular responses following vaccination with hepatitis B virus (HBV) vaccine. Data were integrated across cellular, epigenomic, transcriptomic, proteomic, and fecal microbiome profiles, and correlated to final HBV antibody titres. RESULTS: Using both an unsupervised molecular-interaction network integration method (NetworkAnalyst) and a data-driven integration approach (DIABLO), we uncovered baseline molecular patterns and pathways associated with more effective vaccine responses to HBV. Biological associations were unravelled, with signalling pathways such as JAK-STAT and interleukin signalling, Toll-like receptor cascades, interferon signalling, and Th17 cell differentiation emerging as important pre-vaccination modulators of response. CONCLUSION: This study provides further evidence that baseline cellular and molecular characteristics of an individual’s immune system influence vaccine responses, and highlights the utility of integrating information across many parallel molecular datasets. Frontiers Media S.A. 2020-11-30 /pmc/articles/PMC7734088/ /pubmed/33329547 http://dx.doi.org/10.3389/fimmu.2020.578801 Text en Copyright © 2020 Shannon, Blimkie, Ben-Othman, Gladish, Amenyogbe, Drissler, Edgar, Chan, Krajden, Foster, Kobor, Mohn, Brinkman, Le Cao, Scheuermann, Tebbutt, Hancock, Koff, Kollmann, Sadarangani and Lee http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms. |
spellingShingle | Immunology Shannon, Casey P. Blimkie, Travis M. Ben-Othman, Rym Gladish, Nicole Amenyogbe, Nelly Drissler, Sibyl Edgar, Rachel D. Chan, Queenie Krajden, Mel Foster, Leonard J. Kobor, Michael S. Mohn, William W. Brinkman, Ryan R. Le Cao, Kim-Anh Scheuermann, Richard H. Tebbutt, Scott J. Hancock, Robert E.W. Koff, Wayne C. Kollmann, Tobias R. Sadarangani, Manish Lee, Amy Huei-Yi Multi-Omic Data Integration Allows Baseline Immune Signatures to Predict Hepatitis B Vaccine Response in a Small Cohort |
title | Multi-Omic Data Integration Allows Baseline Immune Signatures to Predict Hepatitis B Vaccine Response in a Small Cohort |
title_full | Multi-Omic Data Integration Allows Baseline Immune Signatures to Predict Hepatitis B Vaccine Response in a Small Cohort |
title_fullStr | Multi-Omic Data Integration Allows Baseline Immune Signatures to Predict Hepatitis B Vaccine Response in a Small Cohort |
title_full_unstemmed | Multi-Omic Data Integration Allows Baseline Immune Signatures to Predict Hepatitis B Vaccine Response in a Small Cohort |
title_short | Multi-Omic Data Integration Allows Baseline Immune Signatures to Predict Hepatitis B Vaccine Response in a Small Cohort |
title_sort | multi-omic data integration allows baseline immune signatures to predict hepatitis b vaccine response in a small cohort |
topic | Immunology |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7734088/ https://www.ncbi.nlm.nih.gov/pubmed/33329547 http://dx.doi.org/10.3389/fimmu.2020.578801 |
work_keys_str_mv | AT shannoncaseyp multiomicdataintegrationallowsbaselineimmunesignaturestopredicthepatitisbvaccineresponseinasmallcohort AT blimkietravism multiomicdataintegrationallowsbaselineimmunesignaturestopredicthepatitisbvaccineresponseinasmallcohort AT benothmanrym multiomicdataintegrationallowsbaselineimmunesignaturestopredicthepatitisbvaccineresponseinasmallcohort AT gladishnicole multiomicdataintegrationallowsbaselineimmunesignaturestopredicthepatitisbvaccineresponseinasmallcohort AT amenyogbenelly multiomicdataintegrationallowsbaselineimmunesignaturestopredicthepatitisbvaccineresponseinasmallcohort AT drisslersibyl multiomicdataintegrationallowsbaselineimmunesignaturestopredicthepatitisbvaccineresponseinasmallcohort AT edgarracheld multiomicdataintegrationallowsbaselineimmunesignaturestopredicthepatitisbvaccineresponseinasmallcohort AT chanqueenie multiomicdataintegrationallowsbaselineimmunesignaturestopredicthepatitisbvaccineresponseinasmallcohort AT krajdenmel multiomicdataintegrationallowsbaselineimmunesignaturestopredicthepatitisbvaccineresponseinasmallcohort AT fosterleonardj multiomicdataintegrationallowsbaselineimmunesignaturestopredicthepatitisbvaccineresponseinasmallcohort AT kobormichaels multiomicdataintegrationallowsbaselineimmunesignaturestopredicthepatitisbvaccineresponseinasmallcohort AT mohnwilliamw multiomicdataintegrationallowsbaselineimmunesignaturestopredicthepatitisbvaccineresponseinasmallcohort AT brinkmanryanr multiomicdataintegrationallowsbaselineimmunesignaturestopredicthepatitisbvaccineresponseinasmallcohort AT lecaokimanh multiomicdataintegrationallowsbaselineimmunesignaturestopredicthepatitisbvaccineresponseinasmallcohort AT scheuermannrichardh multiomicdataintegrationallowsbaselineimmunesignaturestopredicthepatitisbvaccineresponseinasmallcohort AT tebbuttscottj multiomicdataintegrationallowsbaselineimmunesignaturestopredicthepatitisbvaccineresponseinasmallcohort AT hancockrobertew multiomicdataintegrationallowsbaselineimmunesignaturestopredicthepatitisbvaccineresponseinasmallcohort AT koffwaynec multiomicdataintegrationallowsbaselineimmunesignaturestopredicthepatitisbvaccineresponseinasmallcohort AT kollmanntobiasr multiomicdataintegrationallowsbaselineimmunesignaturestopredicthepatitisbvaccineresponseinasmallcohort AT sadaranganimanish multiomicdataintegrationallowsbaselineimmunesignaturestopredicthepatitisbvaccineresponseinasmallcohort AT leeamyhueiyi multiomicdataintegrationallowsbaselineimmunesignaturestopredicthepatitisbvaccineresponseinasmallcohort |