Cargando…

Multi-Omic Data Integration Allows Baseline Immune Signatures to Predict Hepatitis B Vaccine Response in a Small Cohort

BACKGROUND: Vaccination remains one of the most effective means of reducing the burden of infectious diseases globally. Improving our understanding of the molecular basis for effective vaccine response is of paramount importance if we are to ensure the success of future vaccine development efforts....

Descripción completa

Detalles Bibliográficos
Autores principales: Shannon, Casey P., Blimkie, Travis M., Ben-Othman, Rym, Gladish, Nicole, Amenyogbe, Nelly, Drissler, Sibyl, Edgar, Rachel D., Chan, Queenie, Krajden, Mel, Foster, Leonard J., Kobor, Michael S., Mohn, William W., Brinkman, Ryan R., Le Cao, Kim-Anh, Scheuermann, Richard H., Tebbutt, Scott J., Hancock, Robert E.W., Koff, Wayne C., Kollmann, Tobias R., Sadarangani, Manish, Lee, Amy Huei-Yi
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Frontiers Media S.A. 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7734088/
https://www.ncbi.nlm.nih.gov/pubmed/33329547
http://dx.doi.org/10.3389/fimmu.2020.578801
_version_ 1783622397907173376
author Shannon, Casey P.
Blimkie, Travis M.
Ben-Othman, Rym
Gladish, Nicole
Amenyogbe, Nelly
Drissler, Sibyl
Edgar, Rachel D.
Chan, Queenie
Krajden, Mel
Foster, Leonard J.
Kobor, Michael S.
Mohn, William W.
Brinkman, Ryan R.
Le Cao, Kim-Anh
Scheuermann, Richard H.
Tebbutt, Scott J.
Hancock, Robert E.W.
Koff, Wayne C.
Kollmann, Tobias R.
Sadarangani, Manish
Lee, Amy Huei-Yi
author_facet Shannon, Casey P.
Blimkie, Travis M.
Ben-Othman, Rym
Gladish, Nicole
Amenyogbe, Nelly
Drissler, Sibyl
Edgar, Rachel D.
Chan, Queenie
Krajden, Mel
Foster, Leonard J.
Kobor, Michael S.
Mohn, William W.
Brinkman, Ryan R.
Le Cao, Kim-Anh
Scheuermann, Richard H.
Tebbutt, Scott J.
Hancock, Robert E.W.
Koff, Wayne C.
Kollmann, Tobias R.
Sadarangani, Manish
Lee, Amy Huei-Yi
author_sort Shannon, Casey P.
collection PubMed
description BACKGROUND: Vaccination remains one of the most effective means of reducing the burden of infectious diseases globally. Improving our understanding of the molecular basis for effective vaccine response is of paramount importance if we are to ensure the success of future vaccine development efforts. METHODS: We applied cutting edge multi-omics approaches to extensively characterize temporal molecular responses following vaccination with hepatitis B virus (HBV) vaccine. Data were integrated across cellular, epigenomic, transcriptomic, proteomic, and fecal microbiome profiles, and correlated to final HBV antibody titres. RESULTS: Using both an unsupervised molecular-interaction network integration method (NetworkAnalyst) and a data-driven integration approach (DIABLO), we uncovered baseline molecular patterns and pathways associated with more effective vaccine responses to HBV. Biological associations were unravelled, with signalling pathways such as JAK-STAT and interleukin signalling, Toll-like receptor cascades, interferon signalling, and Th17 cell differentiation emerging as important pre-vaccination modulators of response. CONCLUSION: This study provides further evidence that baseline cellular and molecular characteristics of an individual’s immune system influence vaccine responses, and highlights the utility of integrating information across many parallel molecular datasets.
format Online
Article
Text
id pubmed-7734088
institution National Center for Biotechnology Information
language English
publishDate 2020
publisher Frontiers Media S.A.
record_format MEDLINE/PubMed
spelling pubmed-77340882020-12-15 Multi-Omic Data Integration Allows Baseline Immune Signatures to Predict Hepatitis B Vaccine Response in a Small Cohort Shannon, Casey P. Blimkie, Travis M. Ben-Othman, Rym Gladish, Nicole Amenyogbe, Nelly Drissler, Sibyl Edgar, Rachel D. Chan, Queenie Krajden, Mel Foster, Leonard J. Kobor, Michael S. Mohn, William W. Brinkman, Ryan R. Le Cao, Kim-Anh Scheuermann, Richard H. Tebbutt, Scott J. Hancock, Robert E.W. Koff, Wayne C. Kollmann, Tobias R. Sadarangani, Manish Lee, Amy Huei-Yi Front Immunol Immunology BACKGROUND: Vaccination remains one of the most effective means of reducing the burden of infectious diseases globally. Improving our understanding of the molecular basis for effective vaccine response is of paramount importance if we are to ensure the success of future vaccine development efforts. METHODS: We applied cutting edge multi-omics approaches to extensively characterize temporal molecular responses following vaccination with hepatitis B virus (HBV) vaccine. Data were integrated across cellular, epigenomic, transcriptomic, proteomic, and fecal microbiome profiles, and correlated to final HBV antibody titres. RESULTS: Using both an unsupervised molecular-interaction network integration method (NetworkAnalyst) and a data-driven integration approach (DIABLO), we uncovered baseline molecular patterns and pathways associated with more effective vaccine responses to HBV. Biological associations were unravelled, with signalling pathways such as JAK-STAT and interleukin signalling, Toll-like receptor cascades, interferon signalling, and Th17 cell differentiation emerging as important pre-vaccination modulators of response. CONCLUSION: This study provides further evidence that baseline cellular and molecular characteristics of an individual’s immune system influence vaccine responses, and highlights the utility of integrating information across many parallel molecular datasets. Frontiers Media S.A. 2020-11-30 /pmc/articles/PMC7734088/ /pubmed/33329547 http://dx.doi.org/10.3389/fimmu.2020.578801 Text en Copyright © 2020 Shannon, Blimkie, Ben-Othman, Gladish, Amenyogbe, Drissler, Edgar, Chan, Krajden, Foster, Kobor, Mohn, Brinkman, Le Cao, Scheuermann, Tebbutt, Hancock, Koff, Kollmann, Sadarangani and Lee http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
spellingShingle Immunology
Shannon, Casey P.
Blimkie, Travis M.
Ben-Othman, Rym
Gladish, Nicole
Amenyogbe, Nelly
Drissler, Sibyl
Edgar, Rachel D.
Chan, Queenie
Krajden, Mel
Foster, Leonard J.
Kobor, Michael S.
Mohn, William W.
Brinkman, Ryan R.
Le Cao, Kim-Anh
Scheuermann, Richard H.
Tebbutt, Scott J.
Hancock, Robert E.W.
Koff, Wayne C.
Kollmann, Tobias R.
Sadarangani, Manish
Lee, Amy Huei-Yi
Multi-Omic Data Integration Allows Baseline Immune Signatures to Predict Hepatitis B Vaccine Response in a Small Cohort
title Multi-Omic Data Integration Allows Baseline Immune Signatures to Predict Hepatitis B Vaccine Response in a Small Cohort
title_full Multi-Omic Data Integration Allows Baseline Immune Signatures to Predict Hepatitis B Vaccine Response in a Small Cohort
title_fullStr Multi-Omic Data Integration Allows Baseline Immune Signatures to Predict Hepatitis B Vaccine Response in a Small Cohort
title_full_unstemmed Multi-Omic Data Integration Allows Baseline Immune Signatures to Predict Hepatitis B Vaccine Response in a Small Cohort
title_short Multi-Omic Data Integration Allows Baseline Immune Signatures to Predict Hepatitis B Vaccine Response in a Small Cohort
title_sort multi-omic data integration allows baseline immune signatures to predict hepatitis b vaccine response in a small cohort
topic Immunology
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7734088/
https://www.ncbi.nlm.nih.gov/pubmed/33329547
http://dx.doi.org/10.3389/fimmu.2020.578801
work_keys_str_mv AT shannoncaseyp multiomicdataintegrationallowsbaselineimmunesignaturestopredicthepatitisbvaccineresponseinasmallcohort
AT blimkietravism multiomicdataintegrationallowsbaselineimmunesignaturestopredicthepatitisbvaccineresponseinasmallcohort
AT benothmanrym multiomicdataintegrationallowsbaselineimmunesignaturestopredicthepatitisbvaccineresponseinasmallcohort
AT gladishnicole multiomicdataintegrationallowsbaselineimmunesignaturestopredicthepatitisbvaccineresponseinasmallcohort
AT amenyogbenelly multiomicdataintegrationallowsbaselineimmunesignaturestopredicthepatitisbvaccineresponseinasmallcohort
AT drisslersibyl multiomicdataintegrationallowsbaselineimmunesignaturestopredicthepatitisbvaccineresponseinasmallcohort
AT edgarracheld multiomicdataintegrationallowsbaselineimmunesignaturestopredicthepatitisbvaccineresponseinasmallcohort
AT chanqueenie multiomicdataintegrationallowsbaselineimmunesignaturestopredicthepatitisbvaccineresponseinasmallcohort
AT krajdenmel multiomicdataintegrationallowsbaselineimmunesignaturestopredicthepatitisbvaccineresponseinasmallcohort
AT fosterleonardj multiomicdataintegrationallowsbaselineimmunesignaturestopredicthepatitisbvaccineresponseinasmallcohort
AT kobormichaels multiomicdataintegrationallowsbaselineimmunesignaturestopredicthepatitisbvaccineresponseinasmallcohort
AT mohnwilliamw multiomicdataintegrationallowsbaselineimmunesignaturestopredicthepatitisbvaccineresponseinasmallcohort
AT brinkmanryanr multiomicdataintegrationallowsbaselineimmunesignaturestopredicthepatitisbvaccineresponseinasmallcohort
AT lecaokimanh multiomicdataintegrationallowsbaselineimmunesignaturestopredicthepatitisbvaccineresponseinasmallcohort
AT scheuermannrichardh multiomicdataintegrationallowsbaselineimmunesignaturestopredicthepatitisbvaccineresponseinasmallcohort
AT tebbuttscottj multiomicdataintegrationallowsbaselineimmunesignaturestopredicthepatitisbvaccineresponseinasmallcohort
AT hancockrobertew multiomicdataintegrationallowsbaselineimmunesignaturestopredicthepatitisbvaccineresponseinasmallcohort
AT koffwaynec multiomicdataintegrationallowsbaselineimmunesignaturestopredicthepatitisbvaccineresponseinasmallcohort
AT kollmanntobiasr multiomicdataintegrationallowsbaselineimmunesignaturestopredicthepatitisbvaccineresponseinasmallcohort
AT sadaranganimanish multiomicdataintegrationallowsbaselineimmunesignaturestopredicthepatitisbvaccineresponseinasmallcohort
AT leeamyhueiyi multiomicdataintegrationallowsbaselineimmunesignaturestopredicthepatitisbvaccineresponseinasmallcohort