Cargando…
Antigenicity prediction and vaccine recommendation of human influenza virus A (H3N2) using convolutional neural networks
The rapid evolution of influenza A viruses poses a great challenge to vaccine development. Analytical and machine learning models have been applied to facilitate the process of antigenicity determination. In this study, we designed deep convolutional neural networks (CNNs) to predict Influenza antig...
Autores principales: | Lee, Eva K., Tian, Haozheng, Nakaya, Helder I. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Taylor & Francis
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7734114/ https://www.ncbi.nlm.nih.gov/pubmed/32750260 http://dx.doi.org/10.1080/21645515.2020.1734397 |
Ejemplares similares
-
Convolutional Neural Network Based Approach to In Silico Non-Anticipating Prediction of Antigenic Distance for Influenza Virus
por: Forghani, Majid, et al.
Publicado: (2020) -
Online Doctor Recommendation with Convolutional Neural Network and Sparse Inputs
por: Yan, Yongjie, et al.
Publicado: (2020) -
Antigenic structure of the hemagglutinin of H9N2 influenza viruses
por: Okamatsu, Masatoshi, et al.
Publicado: (2008) -
Effectiveness of A(H1N1)pdm09 Influenza Vaccine in Adults Recommended for Annual Influenza Vaccination
por: Gefenaite, Giedre, et al.
Publicado: (2013) -
Predicting Antigenic Variants of Influenza A/H3N2 Viruses
por: Lee, Min-Shi, et al.
Publicado: (2004)