Cargando…
DNNBrain: A Unifying Toolbox for Mapping Deep Neural Networks and Brains
Deep neural networks (DNNs) have attained human-level performance on dozens of challenging tasks via an end-to-end deep learning strategy. Deep learning allows data representations that have multiple levels of abstraction; however, it does not explicitly provide any insights into the internal operat...
Autores principales: | Chen, Xiayu, Zhou, Ming, Gong, Zhengxin, Xu, Wei, Liu, Xingyu, Huang, Taicheng, Zhen, Zonglei, Liu, Jia |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7734148/ https://www.ncbi.nlm.nih.gov/pubmed/33328946 http://dx.doi.org/10.3389/fncom.2020.580632 |
Ejemplares similares
-
Semantic Relatedness Emerges in Deep Convolutional Neural Networks Designed for Object Recognition
por: Huang, Taicheng, et al.
Publicado: (2021) -
Hierarchical Sparse Coding of Objects in Deep Convolutional Neural Networks
por: Liu, Xingyu, et al.
Publicado: (2020) -
An fMRI dataset for whole-body somatotopic mapping in humans
por: Ma, Sai, et al.
Publicado: (2022) -
The Face Module Emerged in a Deep Convolutional Neural Network Selectively Deprived of Face Experience
por: Xu, Shan, et al.
Publicado: (2021) -
A test-retest dataset for assessing long-term reliability of brain morphology and resting-state brain activity
por: Huang, Lijie, et al.
Publicado: (2016)