Cargando…
A Tensor-Based Framework for rs-fMRI Classification and Functional Connectivity Construction
Recently, machine learning methods have gained lots of attention from researchers seeking to analyze brain images such as Resting-State Functional Magnetic Resonance Imaging (rs-fMRI) to obtain a deeper understanding of the brain and such related diseases, for example, Alzheimer's disease. Find...
Autores principales: | Noroozi, Ali, Rezghi, Mansoor |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7734298/ https://www.ncbi.nlm.nih.gov/pubmed/33328948 http://dx.doi.org/10.3389/fninf.2020.581897 |
Ejemplares similares
-
Understanding Graph Isomorphism Network for rs-fMRI Functional Connectivity Analysis
por: Kim, Byung-Hoon, et al.
Publicado: (2020) -
Network Connectivity in Epilepsy: Resting State fMRI and EEG–fMRI Contributions
por: Centeno, Maria, et al.
Publicado: (2014) -
Phase fMRI Reveals More Sparseness and Balance of Rest Brain Functional Connectivity Than Magnitude fMRI
por: Chen, Zikuan, et al.
Publicado: (2019) -
Parietal Lobe Reorganization and Widespread Functional Connectivity Integration in Upper-Limb Amputees: A rs-fMRI Study
por: Bao, Bingbo, et al.
Publicado: (2021) -
Construction and Multiple Feature Classification Based on a High-Order Functional Hypernetwork on fMRI Data
por: Li, Yao, et al.
Publicado: (2022)