Cargando…

Estimating daytime sleepiness with previous night electroencephalography, electrooculography, and electromyography spectrograms in patients with suspected sleep apnea using a convolutional neural network

A common symptom of obstructive sleep apnea (OSA) is excessive daytime sleepiness (EDS). The gold standard test for EDS is the multiple sleep latency test (MSLT). However, due to its high cost, MSLT is not routinely conducted for OSA patients and EDS is instead evaluated using sleep questionnaires....

Descripción completa

Detalles Bibliográficos
Autores principales: Nikkonen, Sami, Korkalainen, Henri, Kainulainen, Samu, Myllymaa, Sami, Leino, Akseli, Kalevo, Laura, Oksenberg, Arie, Leppänen, Timo, Töyräs, Juha
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Oxford University Press 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7734478/
https://www.ncbi.nlm.nih.gov/pubmed/32459856
http://dx.doi.org/10.1093/sleep/zsaa106
Descripción
Sumario:A common symptom of obstructive sleep apnea (OSA) is excessive daytime sleepiness (EDS). The gold standard test for EDS is the multiple sleep latency test (MSLT). However, due to its high cost, MSLT is not routinely conducted for OSA patients and EDS is instead evaluated using sleep questionnaires. This is problematic however, since sleep questionnaires are subjective and correlate poorly with the MSLT. Therefore, new objective tools are needed for reliable evaluation of EDS. The aim of this study was to test our hypothesis that EDS can be estimated with neural network analysis of previous night polysomnographic signals. We trained a convolutional neural network (CNN) classifier using electroencephalography, electrooculography, and chin electromyography signals from 2,014 patients with suspected OSA. The CNN was trained to classify the patients into four sleepiness categories based on their mean sleep latency (MSL); severe (MSL < 5min), moderate (5 ≤ MSL < 10), mild (10 ≤ MSL < 15), and normal (MSL ≥ 15). The CNN classified patients to the four sleepiness categories with an overall accuracy of 60.6% and Cohen’s kappa value of 0.464. In two-group classification scheme with sleepy (MSL < 10 min) and non-sleepy (MSL ≥ 10) patients, the CNN achieved an accuracy of 77.2%, with sensitivity of 76.5%, and specificity of 77.9%. Our results show that previous night’s polysomnographic signals can be used for objective estimation of EDS with at least moderate accuracy. Since the diagnosis of OSA is currently confirmed by polysomnography, the classifier could be used simultaneously to get an objective estimate of the daytime sleepiness with minimal extra workload.