Cargando…

The Effect of Free-Field Presentation and Processing Strategy on a Measure of Spectro-Temporal Processing by Cochlear-Implant Listeners

The STRIPES (Spectro-Temporal Ripple for Investigating Processor EffectivenesS) test is a psychophysical test of spectro-temporal resolution developed for cochlear-implant (CI) listeners. Previously, the test has been strictly controlled to minimize the introduction of extraneous, nonspectro-tempora...

Descripción completa

Detalles Bibliográficos
Autores principales: Archer-Boyd, Alan W., Goehring, Tobias, Carlyon, Robert P.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: SAGE Publications 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7734493/
https://www.ncbi.nlm.nih.gov/pubmed/33305696
http://dx.doi.org/10.1177/2331216520964281
Descripción
Sumario:The STRIPES (Spectro-Temporal Ripple for Investigating Processor EffectivenesS) test is a psychophysical test of spectro-temporal resolution developed for cochlear-implant (CI) listeners. Previously, the test has been strictly controlled to minimize the introduction of extraneous, nonspectro-temporal cues. Here, the effect of relaxing many of those controls was investigated to ascertain the generalizability of the STRIPES test. Preemphasis compensation was removed from the STRIPES stimuli, the test was presented over a loudspeaker at a level similar to conversational speech and above the automatic gain control threshold of the CI processor, and listeners were tested using the everyday setting of their clinical devices. There was no significant difference in STRIPES thresholds measured across conditions for the 10 CI listeners tested. One listener obtained higher (better) thresholds when listening with their clinical processor. An analysis of longitudinal results showed excellent test–retest reliability of STRIPES over multiple listening sessions with similar conditions. Overall, the results show that the STRIPES test is robust to extraneous cues, and that thresholds are reliable over time. It is sufficiently robust for use with different processing strategies, free-field presentation, and in nonresearch settings.