Cargando…

Metalearning approach for leukemia informative genes prioritization

The discovery of diagnostic or prognostic biomarkers is fundamental to optimize therapeutics for patients. By enhancing the interpretability of the prediction model, this work is aimed to optimize Leukemia diagnosis while retaining a high-performance evaluation in the identification of informative g...

Descripción completa

Detalles Bibliográficos
Autores principales: Rodrigues, Vânia, Deusdado, Sérgio
Formato: Online Artículo Texto
Lenguaje:English
Publicado: De Gruyter 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7734502/
https://www.ncbi.nlm.nih.gov/pubmed/32383690
http://dx.doi.org/10.1515/jib-2019-0069
Descripción
Sumario:The discovery of diagnostic or prognostic biomarkers is fundamental to optimize therapeutics for patients. By enhancing the interpretability of the prediction model, this work is aimed to optimize Leukemia diagnosis while retaining a high-performance evaluation in the identification of informative genes. For this purpose, we used an optimal parameterization of Kernel Logistic Regression method on Leukemia microarray gene expression data classification, applying metalearners to select attributes, reducing the data dimensionality before passing it to the classifier. Pearson correlation and chi-squared statistic were the attribute evaluators applied on metalearners, having information gain as single-attribute evaluator. The implemented models relied on 10-fold cross-validation. The metalearners approach identified 12 common genes, with highest average merit of 0.999. The practical work was developed using the public datamining software WEKA.