Cargando…

Various cross-linking methods inhibit the collagenase I degradation of rabbit scleral tissue

BACKGROUND: Collagen cross-linking of the sclera is a promising approach to strengthen scleral rigidity and thus to inhibit eye growth in progressive myopia. Additionally, cross-linking might inhibit degrading processes in idiopathic melting or in ocular inflammatory diseases of the sclera. Differen...

Descripción completa

Detalles Bibliográficos
Autores principales: Krasselt, Konstantin, Frommelt, Cornelius, Brunner, Robert, Rauscher, Franziska Georgia, Francke, Mike, Körber, Nicole
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7734860/
https://www.ncbi.nlm.nih.gov/pubmed/33317477
http://dx.doi.org/10.1186/s12886-020-01751-z
Descripción
Sumario:BACKGROUND: Collagen cross-linking of the sclera is a promising approach to strengthen scleral rigidity and thus to inhibit eye growth in progressive myopia. Additionally, cross-linking might inhibit degrading processes in idiopathic melting or in ocular inflammatory diseases of the sclera. Different cross-linking treatments were tested to increase resistance to enzymatic degradation of the rabbit sclera. METHODS: Scleral patches from rabbit eyes were cross-linked using paraformaldehyde, glutaraldehyde or riboflavin combined with UV-A-light or with blue light. The patches were incubated with collagenase I (MMP1) for various durations up to 24 h to elucidate differences in scleral resistance to enzymatic degradation. Degraded protein components in the supernatant were detected and quantified using measurements of Fluoraldehyde o-Phthaldialdehyde (OPA) fluorescence. RESULTS: All cross-linking methods reduced the enzymatic degradation of rabbit scleral tissue by MMP1. Incubation with glutaraldehyde (1%) and paraformaldehyde (4%) caused nearly a complete inhibition of enzymatic degradation (down to 7% ± 2.8 of digested protein compared to control). Cross-linking with riboflavin/UV-A-light reduced the degradation by MMP1 to 62% ± 12.7 after 24 h. Cross-linking with riboflavin/blue light reduced the degradation by MMP1 to 77% ± 13.5 after 24 h. No significant differences could be detected comparing different light intensities, light exposure times or riboflavin concentrations. CONCLUSIONS: The application of all cross-linking methods increased the resistance of rabbit scleral tissue to MMP1-degradation. Especially, gentle cross-linking with riboflavin and UV-A or blue light might be a clinical approach in future.