Cargando…
Frontal electroencephalogram based drug, sex, and age independent sedation level prediction using non-linear machine learning algorithms
Brain monitors which track quantitative electroencephalogram (EEG) signatures to monitor sedation levels are drug and patient specific. There is a need for robust sedation level monitoring systems to accurately track sedation levels across all drug classes, sex and age groups. Forty-four quantitativ...
Autores principales: | Ramaswamy, S. M., Kuizenga, M. H., Weerink, M. A. S., Vereecke, H. E. M., Struys, M. M. R. F., Belur Nagaraj, S. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Springer Netherlands
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7734899/ https://www.ncbi.nlm.nih.gov/pubmed/33315176 http://dx.doi.org/10.1007/s10877-020-00627-3 |
Ejemplares similares
-
Dexmedetomidine-induced deep sedation mimics non-rapid eye movement stage 3 sleep: large-scale validation using machine learning
por: Ramaswamy, Sowmya M, et al.
Publicado: (2020) -
Predicting Deep Hypnotic State From Sleep Brain Rhythms Using Deep Learning: A Data-Repurposing Approach
por: Belur Nagaraj, Sunil, et al.
Publicado: (2020) -
Different effects of propofol and dexmedetomidine sedation on electroencephalogram patterns: Wakefulness, moderate sedation, deep sedation and recovery
por: Xi, Chunhua, et al.
Publicado: (2018) -
Sex‐related patterns in the electroencephalogram and their relevance in machine learning classifiers
por: Jochmann, Thomas, et al.
Publicado: (2023) -
Frontal Electroencephalogram Alpha Asymmetry during Mental Stress Related to Workplace Noise
por: Alyan, Emad, et al.
Publicado: (2021)