Cargando…

A Model of Aerobic and Anaerobic Metabolism of Hydrogen in the Extremophile Acidithiobacillus ferrooxidans

Hydrogen can serve as an electron donor for chemolithotrophic acidophiles, especially in the deep terrestrial subsurface and geothermal ecosystems. Nevertheless, the current knowledge of hydrogen utilization by mesophilic acidophiles is minimal. A multi-omics analysis was applied on Acidithiobacillu...

Descripción completa

Detalles Bibliográficos
Autores principales: Kucera, Jiri, Lochman, Jan, Bouchal, Pavel, Pakostova, Eva, Mikulasek, Kamil, Hedrich, Sabrina, Janiczek, Oldrich, Mandl, Martin, Johnson, D. Barrie
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Frontiers Media S.A. 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7735108/
https://www.ncbi.nlm.nih.gov/pubmed/33329503
http://dx.doi.org/10.3389/fmicb.2020.610836
_version_ 1783622598298435584
author Kucera, Jiri
Lochman, Jan
Bouchal, Pavel
Pakostova, Eva
Mikulasek, Kamil
Hedrich, Sabrina
Janiczek, Oldrich
Mandl, Martin
Johnson, D. Barrie
author_facet Kucera, Jiri
Lochman, Jan
Bouchal, Pavel
Pakostova, Eva
Mikulasek, Kamil
Hedrich, Sabrina
Janiczek, Oldrich
Mandl, Martin
Johnson, D. Barrie
author_sort Kucera, Jiri
collection PubMed
description Hydrogen can serve as an electron donor for chemolithotrophic acidophiles, especially in the deep terrestrial subsurface and geothermal ecosystems. Nevertheless, the current knowledge of hydrogen utilization by mesophilic acidophiles is minimal. A multi-omics analysis was applied on Acidithiobacillus ferrooxidans growing on hydrogen, and a respiratory model was proposed. In the model, [NiFe] hydrogenases oxidize hydrogen to two protons and two electrons. The electrons are used to reduce membrane-soluble ubiquinone to ubiquinol. Genetically associated iron-sulfur proteins mediate electron relay from the hydrogenases to the ubiquinone pool. Under aerobic conditions, reduced ubiquinol transfers electrons to either cytochrome aa(3) oxidase via cytochrome bc(1) complex and cytochrome c(4) or the alternate directly to cytochrome bd oxidase, resulting in proton efflux and reduction of oxygen. Under anaerobic conditions, reduced ubiquinol transfers electrons to outer membrane cytochrome c (ferrireductase) via cytochrome bc(1) complex and a cascade of electron transporters (cytochrome c(4), cytochrome c(552), rusticyanin, and high potential iron-sulfur protein), resulting in proton efflux and reduction of ferric iron. The proton gradient generated by hydrogen oxidation maintains the membrane potential and allows the generation of ATP and NADH. These results further clarify the role of extremophiles in biogeochemical processes and their impact on the composition of the deep terrestrial subsurface.
format Online
Article
Text
id pubmed-7735108
institution National Center for Biotechnology Information
language English
publishDate 2020
publisher Frontiers Media S.A.
record_format MEDLINE/PubMed
spelling pubmed-77351082020-12-15 A Model of Aerobic and Anaerobic Metabolism of Hydrogen in the Extremophile Acidithiobacillus ferrooxidans Kucera, Jiri Lochman, Jan Bouchal, Pavel Pakostova, Eva Mikulasek, Kamil Hedrich, Sabrina Janiczek, Oldrich Mandl, Martin Johnson, D. Barrie Front Microbiol Microbiology Hydrogen can serve as an electron donor for chemolithotrophic acidophiles, especially in the deep terrestrial subsurface and geothermal ecosystems. Nevertheless, the current knowledge of hydrogen utilization by mesophilic acidophiles is minimal. A multi-omics analysis was applied on Acidithiobacillus ferrooxidans growing on hydrogen, and a respiratory model was proposed. In the model, [NiFe] hydrogenases oxidize hydrogen to two protons and two electrons. The electrons are used to reduce membrane-soluble ubiquinone to ubiquinol. Genetically associated iron-sulfur proteins mediate electron relay from the hydrogenases to the ubiquinone pool. Under aerobic conditions, reduced ubiquinol transfers electrons to either cytochrome aa(3) oxidase via cytochrome bc(1) complex and cytochrome c(4) or the alternate directly to cytochrome bd oxidase, resulting in proton efflux and reduction of oxygen. Under anaerobic conditions, reduced ubiquinol transfers electrons to outer membrane cytochrome c (ferrireductase) via cytochrome bc(1) complex and a cascade of electron transporters (cytochrome c(4), cytochrome c(552), rusticyanin, and high potential iron-sulfur protein), resulting in proton efflux and reduction of ferric iron. The proton gradient generated by hydrogen oxidation maintains the membrane potential and allows the generation of ATP and NADH. These results further clarify the role of extremophiles in biogeochemical processes and their impact on the composition of the deep terrestrial subsurface. Frontiers Media S.A. 2020-11-30 /pmc/articles/PMC7735108/ /pubmed/33329503 http://dx.doi.org/10.3389/fmicb.2020.610836 Text en Copyright © 2020 Kucera, Lochman, Bouchal, Pakostova, Mikulasek, Hedrich, Janiczek, Mandl and Johnson. http://creativecommons.org/licenses/by/4.0/ This is an open-access article distributed under the terms of the Creative Commons Attribution License (CC BY). The use, distribution or reproduction in other forums is permitted, provided the original author(s) and the copyright owner(s) are credited and that the original publication in this journal is cited, in accordance with accepted academic practice. No use, distribution or reproduction is permitted which does not comply with these terms.
spellingShingle Microbiology
Kucera, Jiri
Lochman, Jan
Bouchal, Pavel
Pakostova, Eva
Mikulasek, Kamil
Hedrich, Sabrina
Janiczek, Oldrich
Mandl, Martin
Johnson, D. Barrie
A Model of Aerobic and Anaerobic Metabolism of Hydrogen in the Extremophile Acidithiobacillus ferrooxidans
title A Model of Aerobic and Anaerobic Metabolism of Hydrogen in the Extremophile Acidithiobacillus ferrooxidans
title_full A Model of Aerobic and Anaerobic Metabolism of Hydrogen in the Extremophile Acidithiobacillus ferrooxidans
title_fullStr A Model of Aerobic and Anaerobic Metabolism of Hydrogen in the Extremophile Acidithiobacillus ferrooxidans
title_full_unstemmed A Model of Aerobic and Anaerobic Metabolism of Hydrogen in the Extremophile Acidithiobacillus ferrooxidans
title_short A Model of Aerobic and Anaerobic Metabolism of Hydrogen in the Extremophile Acidithiobacillus ferrooxidans
title_sort model of aerobic and anaerobic metabolism of hydrogen in the extremophile acidithiobacillus ferrooxidans
topic Microbiology
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7735108/
https://www.ncbi.nlm.nih.gov/pubmed/33329503
http://dx.doi.org/10.3389/fmicb.2020.610836
work_keys_str_mv AT kucerajiri amodelofaerobicandanaerobicmetabolismofhydrogenintheextremophileacidithiobacillusferrooxidans
AT lochmanjan amodelofaerobicandanaerobicmetabolismofhydrogenintheextremophileacidithiobacillusferrooxidans
AT bouchalpavel amodelofaerobicandanaerobicmetabolismofhydrogenintheextremophileacidithiobacillusferrooxidans
AT pakostovaeva amodelofaerobicandanaerobicmetabolismofhydrogenintheextremophileacidithiobacillusferrooxidans
AT mikulasekkamil amodelofaerobicandanaerobicmetabolismofhydrogenintheextremophileacidithiobacillusferrooxidans
AT hedrichsabrina amodelofaerobicandanaerobicmetabolismofhydrogenintheextremophileacidithiobacillusferrooxidans
AT janiczekoldrich amodelofaerobicandanaerobicmetabolismofhydrogenintheextremophileacidithiobacillusferrooxidans
AT mandlmartin amodelofaerobicandanaerobicmetabolismofhydrogenintheextremophileacidithiobacillusferrooxidans
AT johnsondbarrie amodelofaerobicandanaerobicmetabolismofhydrogenintheextremophileacidithiobacillusferrooxidans
AT kucerajiri modelofaerobicandanaerobicmetabolismofhydrogenintheextremophileacidithiobacillusferrooxidans
AT lochmanjan modelofaerobicandanaerobicmetabolismofhydrogenintheextremophileacidithiobacillusferrooxidans
AT bouchalpavel modelofaerobicandanaerobicmetabolismofhydrogenintheextremophileacidithiobacillusferrooxidans
AT pakostovaeva modelofaerobicandanaerobicmetabolismofhydrogenintheextremophileacidithiobacillusferrooxidans
AT mikulasekkamil modelofaerobicandanaerobicmetabolismofhydrogenintheextremophileacidithiobacillusferrooxidans
AT hedrichsabrina modelofaerobicandanaerobicmetabolismofhydrogenintheextremophileacidithiobacillusferrooxidans
AT janiczekoldrich modelofaerobicandanaerobicmetabolismofhydrogenintheextremophileacidithiobacillusferrooxidans
AT mandlmartin modelofaerobicandanaerobicmetabolismofhydrogenintheextremophileacidithiobacillusferrooxidans
AT johnsondbarrie modelofaerobicandanaerobicmetabolismofhydrogenintheextremophileacidithiobacillusferrooxidans