Cargando…

The wisdom of stalemates: consensus and clustering as filtering mechanisms for improving collective accuracy

Groups of organisms, from bacteria to fish schools to human societies, depend on their ability to make accurate decisions in an uncertain world. Most models of collective decision-making assume that groups reach a consensus during a decision-making bout, often through simple majority rule. In many n...

Descripción completa

Detalles Bibliográficos
Autores principales: Winklmayr, Claudia, Kao, Albert B., Bak-Coleman, Joseph B., Romanczuk, Pawel
Formato: Online Artículo Texto
Lenguaje:English
Publicado: The Royal Society 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7735266/
https://www.ncbi.nlm.nih.gov/pubmed/33143576
http://dx.doi.org/10.1098/rspb.2020.1802
Descripción
Sumario:Groups of organisms, from bacteria to fish schools to human societies, depend on their ability to make accurate decisions in an uncertain world. Most models of collective decision-making assume that groups reach a consensus during a decision-making bout, often through simple majority rule. In many natural and sociological systems, however, groups may fail to reach consensus, resulting in stalemates. Here, we build on opinion dynamics and collective wisdom models to examine how stalemates may affect the wisdom of crowds. For simple environments, where individuals have access to independent sources of information, we find that stalemates improve collective accuracy by selectively filtering out incorrect decisions (an effect we call stalemate filtering). In complex environments, where individuals have access to both shared and independent information, this effect is even more pronounced, restoring the wisdom of crowds in regions of parameter space where large groups perform poorly when making decisions using majority rule. We identify network properties that tune the system between consensus and accuracy, providing mechanisms by which animals, or evolution, could dynamically adjust the collective decision-making process in response to the reward structure of the possible outcomes. Overall, these results highlight the adaptive potential of stalemate filtering for improving the decision-making abilities of group-living animals.