Cargando…
Adsorption of Myoglobin and Corona Formation on Silica Nanoparticles
[Image: see text] The adsorption of proteins from aqueous medium leads to the formation of protein corona on nanoparticles. The formation of protein corona is governed by a complex interplay of protein–particle and protein–protein interactions, such as electrostatics, van der Waals, hydrophobic, hyd...
Autores principales: | , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
American
Chemical Society
2020
|
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7735741/ https://www.ncbi.nlm.nih.gov/pubmed/33210541 http://dx.doi.org/10.1021/acs.langmuir.0c01613 |
_version_ | 1783622693165203456 |
---|---|
author | Lee, Jin Gyun Lannigan, Kelly Shelton, William A. Meissner, Jens Bharti, Bhuvnesh |
author_facet | Lee, Jin Gyun Lannigan, Kelly Shelton, William A. Meissner, Jens Bharti, Bhuvnesh |
author_sort | Lee, Jin Gyun |
collection | PubMed |
description | [Image: see text] The adsorption of proteins from aqueous medium leads to the formation of protein corona on nanoparticles. The formation of protein corona is governed by a complex interplay of protein–particle and protein–protein interactions, such as electrostatics, van der Waals, hydrophobic, hydrogen bonding, and solvation. The experimental parameters influencing these interactions, and thus governing the protein corona formation on nanoparticles, are currently poorly understood. This lack of understanding is due to the complexity in the surface charge distribution and anisotropic shape of the protein molecules. Here, we investigate the effect of pH and salinity on the characteristics of corona formed by myoglobin on silica nanoparticles. We experimentally measure and theoretically model the adsorption isotherms of myoglobin binding to silica nanoparticles. By combining adsorption studies with surface electrostatic mapping of myoglobin, we demonstrate that a monolayered hard corona is formed in low salinity dispersions, which transforms into a multilayered hard + soft corona upon the addition of salt. We attribute the observed changes in protein adsorption behavior with increasing pH and salinity to the change in electrostatic interactions and surface charge regulation effects. This study provides insights into the mechanism of protein adsorption and corona formation on nanoparticles, which would guide future studies on optimizing nanoparticle design for maximum functional benefits and minimum toxicity. |
format | Online Article Text |
id | pubmed-7735741 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | American
Chemical Society |
record_format | MEDLINE/PubMed |
spelling | pubmed-77357412020-12-15 Adsorption of Myoglobin and Corona Formation on Silica Nanoparticles Lee, Jin Gyun Lannigan, Kelly Shelton, William A. Meissner, Jens Bharti, Bhuvnesh Langmuir [Image: see text] The adsorption of proteins from aqueous medium leads to the formation of protein corona on nanoparticles. The formation of protein corona is governed by a complex interplay of protein–particle and protein–protein interactions, such as electrostatics, van der Waals, hydrophobic, hydrogen bonding, and solvation. The experimental parameters influencing these interactions, and thus governing the protein corona formation on nanoparticles, are currently poorly understood. This lack of understanding is due to the complexity in the surface charge distribution and anisotropic shape of the protein molecules. Here, we investigate the effect of pH and salinity on the characteristics of corona formed by myoglobin on silica nanoparticles. We experimentally measure and theoretically model the adsorption isotherms of myoglobin binding to silica nanoparticles. By combining adsorption studies with surface electrostatic mapping of myoglobin, we demonstrate that a monolayered hard corona is formed in low salinity dispersions, which transforms into a multilayered hard + soft corona upon the addition of salt. We attribute the observed changes in protein adsorption behavior with increasing pH and salinity to the change in electrostatic interactions and surface charge regulation effects. This study provides insights into the mechanism of protein adsorption and corona formation on nanoparticles, which would guide future studies on optimizing nanoparticle design for maximum functional benefits and minimum toxicity. American Chemical Society 2020-11-19 2020-12-01 /pmc/articles/PMC7735741/ /pubmed/33210541 http://dx.doi.org/10.1021/acs.langmuir.0c01613 Text en © 2020 American Chemical Society This is an open access article published under a Creative Commons Attribution (CC-BY) License (http://pubs.acs.org/page/policy/authorchoice_ccby_termsofuse.html) , which permits unrestricted use, distribution and reproduction in any medium, provided the author and source are cited. |
spellingShingle | Lee, Jin Gyun Lannigan, Kelly Shelton, William A. Meissner, Jens Bharti, Bhuvnesh Adsorption of Myoglobin and Corona Formation on Silica Nanoparticles |
title | Adsorption of Myoglobin
and Corona Formation on Silica
Nanoparticles |
title_full | Adsorption of Myoglobin
and Corona Formation on Silica
Nanoparticles |
title_fullStr | Adsorption of Myoglobin
and Corona Formation on Silica
Nanoparticles |
title_full_unstemmed | Adsorption of Myoglobin
and Corona Formation on Silica
Nanoparticles |
title_short | Adsorption of Myoglobin
and Corona Formation on Silica
Nanoparticles |
title_sort | adsorption of myoglobin
and corona formation on silica
nanoparticles |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7735741/ https://www.ncbi.nlm.nih.gov/pubmed/33210541 http://dx.doi.org/10.1021/acs.langmuir.0c01613 |
work_keys_str_mv | AT leejingyun adsorptionofmyoglobinandcoronaformationonsilicananoparticles AT lannigankelly adsorptionofmyoglobinandcoronaformationonsilicananoparticles AT sheltonwilliama adsorptionofmyoglobinandcoronaformationonsilicananoparticles AT meissnerjens adsorptionofmyoglobinandcoronaformationonsilicananoparticles AT bhartibhuvnesh adsorptionofmyoglobinandcoronaformationonsilicananoparticles |