Cargando…
PmDNE: Prediction of miRNA-Disease Association Based on Network Embedding and Network Similarity Analysis
Successful prediction of miRNA-disease association is nontrivial for the diagnosis and prognosis of genetic diseases. There are many methods to predict miRNA and disease, but biological data are numerous and complex, and they often exist in the form of network. How to accurately use the features of...
Autores principales: | Li, Junyi, Liu, Ying, Zhang, Zhongqing, Liu, Bo, Wang, Yadong |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Hindawi
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7735824/ https://www.ncbi.nlm.nih.gov/pubmed/33354569 http://dx.doi.org/10.1155/2020/6248686 |
Ejemplares similares
-
International meeting on DNE computing
por: Mao, Chengde, et al.
Publicado: (2006) -
MEAHNE: miRNA–Disease Association Prediction Based on Semantic Information in a Heterogeneous Network
por: Huang, Chen, et al.
Publicado: (2022) -
Uncover miRNA-Disease Association by Exploiting Global Network Similarity
por: Chen, Min, et al.
Publicado: (2016) -
Factor graph-aggregated heterogeneous network embedding for disease-gene association prediction
por: He, Ming, et al.
Publicado: (2021) -
EOESGC: predicting miRNA-disease associations based on embedding of embedding and simplified graph convolutional network
por: Pang, Shanchen, et al.
Publicado: (2021)