Cargando…
The Structural Basis of Rubisco Phase Separation in the Pyrenoid
Approximately one-third of global CO(2) fixation occurs in a phase-separated algal organelle called the pyrenoid. Existing data suggest that the pyrenoid forms by the phase separation of the CO(2)-fixing enzyme Rubisco with a linker protein; however, the molecular interactions underlying this phase...
Autores principales: | , , , , , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7736253/ https://www.ncbi.nlm.nih.gov/pubmed/33230314 http://dx.doi.org/10.1038/s41477-020-00811-y |
_version_ | 1783622765103808512 |
---|---|
author | He, Shan Chou, Hui-Ting Matthies, Doreen Wunder, Tobias Meyer, Moritz T. Atkinson, Nicky Martinez-Sanchez, Antonio Jeffrey, Philip D. Port, Sarah A. Patena, Weronika He, Guanhua Chen, Vivian K. Hughson, Frederick M. McCormick, Alistair J. Mueller-Cajar, Oliver Engel, Benjamin D. Yu, Zhiheng Jonikas, Martin C. |
author_facet | He, Shan Chou, Hui-Ting Matthies, Doreen Wunder, Tobias Meyer, Moritz T. Atkinson, Nicky Martinez-Sanchez, Antonio Jeffrey, Philip D. Port, Sarah A. Patena, Weronika He, Guanhua Chen, Vivian K. Hughson, Frederick M. McCormick, Alistair J. Mueller-Cajar, Oliver Engel, Benjamin D. Yu, Zhiheng Jonikas, Martin C. |
author_sort | He, Shan |
collection | PubMed |
description | Approximately one-third of global CO(2) fixation occurs in a phase-separated algal organelle called the pyrenoid. Existing data suggest that the pyrenoid forms by the phase separation of the CO(2)-fixing enzyme Rubisco with a linker protein; however, the molecular interactions underlying this phase separation remain unknown. Here we present the structural basis of the interactions between Rubisco and its intrinsically disordered linker protein EPYC1 (Essential Pyrenoid Component 1) in the model alga Chlamydomonas reinhardtii. We find that EPYC1 consists of five evenly-spaced Rubisco-binding regions that share sequence similarity. Single-particle cryo-electron microscopy of these regions in complex with Rubisco indicates that each Rubisco holoenzyme has eight binding sites for EPYC1, one on each Rubisco small subunit. Interface mutations disrupt binding, phase separation, and pyrenoid formation. Cryo-electron tomography supports a model where EPYC1 and Rubisco form a co-dependent multivalent network of specific low-affinity bonds, giving the matrix liquid-like properties. Our results advance the structural and functional understanding of the phase separation underlying the pyrenoid, an organelle that plays a fundamental role in the global carbon cycle. |
format | Online Article Text |
id | pubmed-7736253 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
record_format | MEDLINE/PubMed |
spelling | pubmed-77362532021-05-23 The Structural Basis of Rubisco Phase Separation in the Pyrenoid He, Shan Chou, Hui-Ting Matthies, Doreen Wunder, Tobias Meyer, Moritz T. Atkinson, Nicky Martinez-Sanchez, Antonio Jeffrey, Philip D. Port, Sarah A. Patena, Weronika He, Guanhua Chen, Vivian K. Hughson, Frederick M. McCormick, Alistair J. Mueller-Cajar, Oliver Engel, Benjamin D. Yu, Zhiheng Jonikas, Martin C. Nat Plants Article Approximately one-third of global CO(2) fixation occurs in a phase-separated algal organelle called the pyrenoid. Existing data suggest that the pyrenoid forms by the phase separation of the CO(2)-fixing enzyme Rubisco with a linker protein; however, the molecular interactions underlying this phase separation remain unknown. Here we present the structural basis of the interactions between Rubisco and its intrinsically disordered linker protein EPYC1 (Essential Pyrenoid Component 1) in the model alga Chlamydomonas reinhardtii. We find that EPYC1 consists of five evenly-spaced Rubisco-binding regions that share sequence similarity. Single-particle cryo-electron microscopy of these regions in complex with Rubisco indicates that each Rubisco holoenzyme has eight binding sites for EPYC1, one on each Rubisco small subunit. Interface mutations disrupt binding, phase separation, and pyrenoid formation. Cryo-electron tomography supports a model where EPYC1 and Rubisco form a co-dependent multivalent network of specific low-affinity bonds, giving the matrix liquid-like properties. Our results advance the structural and functional understanding of the phase separation underlying the pyrenoid, an organelle that plays a fundamental role in the global carbon cycle. 2020-11-23 2020-12 /pmc/articles/PMC7736253/ /pubmed/33230314 http://dx.doi.org/10.1038/s41477-020-00811-y Text en Users may view, print, copy, and download text and data-mine the content in such documents, for the purposes of academic research, subject always to the full Conditions of use:http://www.nature.com/authors/editorial_policies/license.html#terms |
spellingShingle | Article He, Shan Chou, Hui-Ting Matthies, Doreen Wunder, Tobias Meyer, Moritz T. Atkinson, Nicky Martinez-Sanchez, Antonio Jeffrey, Philip D. Port, Sarah A. Patena, Weronika He, Guanhua Chen, Vivian K. Hughson, Frederick M. McCormick, Alistair J. Mueller-Cajar, Oliver Engel, Benjamin D. Yu, Zhiheng Jonikas, Martin C. The Structural Basis of Rubisco Phase Separation in the Pyrenoid |
title | The Structural Basis of Rubisco Phase Separation in the Pyrenoid |
title_full | The Structural Basis of Rubisco Phase Separation in the Pyrenoid |
title_fullStr | The Structural Basis of Rubisco Phase Separation in the Pyrenoid |
title_full_unstemmed | The Structural Basis of Rubisco Phase Separation in the Pyrenoid |
title_short | The Structural Basis of Rubisco Phase Separation in the Pyrenoid |
title_sort | structural basis of rubisco phase separation in the pyrenoid |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7736253/ https://www.ncbi.nlm.nih.gov/pubmed/33230314 http://dx.doi.org/10.1038/s41477-020-00811-y |
work_keys_str_mv | AT heshan thestructuralbasisofrubiscophaseseparationinthepyrenoid AT chouhuiting thestructuralbasisofrubiscophaseseparationinthepyrenoid AT matthiesdoreen thestructuralbasisofrubiscophaseseparationinthepyrenoid AT wundertobias thestructuralbasisofrubiscophaseseparationinthepyrenoid AT meyermoritzt thestructuralbasisofrubiscophaseseparationinthepyrenoid AT atkinsonnicky thestructuralbasisofrubiscophaseseparationinthepyrenoid AT martinezsanchezantonio thestructuralbasisofrubiscophaseseparationinthepyrenoid AT jeffreyphilipd thestructuralbasisofrubiscophaseseparationinthepyrenoid AT portsaraha thestructuralbasisofrubiscophaseseparationinthepyrenoid AT patenaweronika thestructuralbasisofrubiscophaseseparationinthepyrenoid AT heguanhua thestructuralbasisofrubiscophaseseparationinthepyrenoid AT chenviviank thestructuralbasisofrubiscophaseseparationinthepyrenoid AT hughsonfrederickm thestructuralbasisofrubiscophaseseparationinthepyrenoid AT mccormickalistairj thestructuralbasisofrubiscophaseseparationinthepyrenoid AT muellercajaroliver thestructuralbasisofrubiscophaseseparationinthepyrenoid AT engelbenjamind thestructuralbasisofrubiscophaseseparationinthepyrenoid AT yuzhiheng thestructuralbasisofrubiscophaseseparationinthepyrenoid AT jonikasmartinc thestructuralbasisofrubiscophaseseparationinthepyrenoid AT heshan structuralbasisofrubiscophaseseparationinthepyrenoid AT chouhuiting structuralbasisofrubiscophaseseparationinthepyrenoid AT matthiesdoreen structuralbasisofrubiscophaseseparationinthepyrenoid AT wundertobias structuralbasisofrubiscophaseseparationinthepyrenoid AT meyermoritzt structuralbasisofrubiscophaseseparationinthepyrenoid AT atkinsonnicky structuralbasisofrubiscophaseseparationinthepyrenoid AT martinezsanchezantonio structuralbasisofrubiscophaseseparationinthepyrenoid AT jeffreyphilipd structuralbasisofrubiscophaseseparationinthepyrenoid AT portsaraha structuralbasisofrubiscophaseseparationinthepyrenoid AT patenaweronika structuralbasisofrubiscophaseseparationinthepyrenoid AT heguanhua structuralbasisofrubiscophaseseparationinthepyrenoid AT chenviviank structuralbasisofrubiscophaseseparationinthepyrenoid AT hughsonfrederickm structuralbasisofrubiscophaseseparationinthepyrenoid AT mccormickalistairj structuralbasisofrubiscophaseseparationinthepyrenoid AT muellercajaroliver structuralbasisofrubiscophaseseparationinthepyrenoid AT engelbenjamind structuralbasisofrubiscophaseseparationinthepyrenoid AT yuzhiheng structuralbasisofrubiscophaseseparationinthepyrenoid AT jonikasmartinc structuralbasisofrubiscophaseseparationinthepyrenoid |