Cargando…

Coherent electron displacement for quantum information processing using attosecond single cycle pulses

Coherent electron displacement is a conventional strategy for processing quantum information, as it enables to interconnect distinct sites in a network of atoms. The efficiency of the processing relies on the precise control of the mechanism, which has yet to be established. Here, we theoretically d...

Descripción completa

Detalles Bibliográficos
Autor principal: Agueny, Hicham
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7736361/
https://www.ncbi.nlm.nih.gov/pubmed/33318566
http://dx.doi.org/10.1038/s41598-020-79004-8
Descripción
Sumario:Coherent electron displacement is a conventional strategy for processing quantum information, as it enables to interconnect distinct sites in a network of atoms. The efficiency of the processing relies on the precise control of the mechanism, which has yet to be established. Here, we theoretically demonstrate a new route to drive the electron displacement on a timescale faster than that of the dynamical distortion of the electron wavepacket by utilizing attosecond single-cycle pulses. The characteristic feature of these pulses relies on a vast momentum transfer to an electron, leading to its displacement following a unidirectional path. The scenario is illustrated by revealing the spatiotemporal nature of the displaced wavepacket encoding a quantum superposition state. We map out the associated phase information and retrieve it over long distances from the origin. Moreover, we show that a sequence of such pulses applied to a chain of ions enables attosecond control of the directionality of the coherent motion of the electron wavepacket back and forth between the neighbouring sites. An extension to a two-electron spin state demonstrates the versatility of the use of these pulses. Our findings establish a promising route for advanced control of quantum states using attosecond single-cycle pulses, which pave the way towards ultrafast processing of quantum information as well as imaging.