Cargando…
The Conformational Equilibrium of the Neuropeptide Y2 Receptor in Bilayer Membranes
Dynamic structural transitions within the seven‐transmembrane bundle represent the mechanism by which G‐protein‐coupled receptors convert an extracellular chemical signal into an intracellular biological function. Here, the conformational dynamics of the neuropeptide Y receptor type 2 (Y2R) during a...
Autores principales: | , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
John Wiley and Sons Inc.
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7736470/ https://www.ncbi.nlm.nih.gov/pubmed/32790043 http://dx.doi.org/10.1002/anie.202006075 |
_version_ | 1783622789745344512 |
---|---|
author | Krug, Ulrike Gloge, Anika Schmidt, Peter Becker‐Baldus, Johanna Bernhard, Frank Kaiser, Anette Montag, Cindy Gauglitz, Marcel Vishnivetskiy, Sergey A. Gurevich, Vsevolod V. Beck‐Sickinger, Annette G. Glaubitz, Clemens Huster, Daniel |
author_facet | Krug, Ulrike Gloge, Anika Schmidt, Peter Becker‐Baldus, Johanna Bernhard, Frank Kaiser, Anette Montag, Cindy Gauglitz, Marcel Vishnivetskiy, Sergey A. Gurevich, Vsevolod V. Beck‐Sickinger, Annette G. Glaubitz, Clemens Huster, Daniel |
author_sort | Krug, Ulrike |
collection | PubMed |
description | Dynamic structural transitions within the seven‐transmembrane bundle represent the mechanism by which G‐protein‐coupled receptors convert an extracellular chemical signal into an intracellular biological function. Here, the conformational dynamics of the neuropeptide Y receptor type 2 (Y2R) during activation was investigated. The apo, full agonist‐, and arrestin‐bound states of Y2R were prepared by cell‐free expression, functional refolding, and reconstitution into lipid membranes. To study conformational transitions between these states, all six tryptophans of Y2R were (13)C‐labeled. NMR‐signal assignment was achieved by dynamic‐nuclear‐polarization enhancement and the individual functional states of the receptor were characterized by monitoring (13)C NMR chemical shifts. Activation of Y2R is mediated by molecular switches involving the toggle switch residue Trp281(6.48) of the highly conserved SWLP motif and Trp327(7.55) adjacent to the NPxxY motif. Furthermore, a conformationally preserved “cysteine lock”‐Trp116(23.50) was identified. |
format | Online Article Text |
id | pubmed-7736470 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2020 |
publisher | John Wiley and Sons Inc. |
record_format | MEDLINE/PubMed |
spelling | pubmed-77364702020-12-28 The Conformational Equilibrium of the Neuropeptide Y2 Receptor in Bilayer Membranes Krug, Ulrike Gloge, Anika Schmidt, Peter Becker‐Baldus, Johanna Bernhard, Frank Kaiser, Anette Montag, Cindy Gauglitz, Marcel Vishnivetskiy, Sergey A. Gurevich, Vsevolod V. Beck‐Sickinger, Annette G. Glaubitz, Clemens Huster, Daniel Angew Chem Int Ed Engl Research Articles Dynamic structural transitions within the seven‐transmembrane bundle represent the mechanism by which G‐protein‐coupled receptors convert an extracellular chemical signal into an intracellular biological function. Here, the conformational dynamics of the neuropeptide Y receptor type 2 (Y2R) during activation was investigated. The apo, full agonist‐, and arrestin‐bound states of Y2R were prepared by cell‐free expression, functional refolding, and reconstitution into lipid membranes. To study conformational transitions between these states, all six tryptophans of Y2R were (13)C‐labeled. NMR‐signal assignment was achieved by dynamic‐nuclear‐polarization enhancement and the individual functional states of the receptor were characterized by monitoring (13)C NMR chemical shifts. Activation of Y2R is mediated by molecular switches involving the toggle switch residue Trp281(6.48) of the highly conserved SWLP motif and Trp327(7.55) adjacent to the NPxxY motif. Furthermore, a conformationally preserved “cysteine lock”‐Trp116(23.50) was identified. John Wiley and Sons Inc. 2020-09-30 2020-12-21 /pmc/articles/PMC7736470/ /pubmed/32790043 http://dx.doi.org/10.1002/anie.202006075 Text en © 2020 The Authors. Published by Wiley-VCH GmbH This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited. |
spellingShingle | Research Articles Krug, Ulrike Gloge, Anika Schmidt, Peter Becker‐Baldus, Johanna Bernhard, Frank Kaiser, Anette Montag, Cindy Gauglitz, Marcel Vishnivetskiy, Sergey A. Gurevich, Vsevolod V. Beck‐Sickinger, Annette G. Glaubitz, Clemens Huster, Daniel The Conformational Equilibrium of the Neuropeptide Y2 Receptor in Bilayer Membranes |
title | The Conformational Equilibrium of the Neuropeptide Y2 Receptor in Bilayer Membranes |
title_full | The Conformational Equilibrium of the Neuropeptide Y2 Receptor in Bilayer Membranes |
title_fullStr | The Conformational Equilibrium of the Neuropeptide Y2 Receptor in Bilayer Membranes |
title_full_unstemmed | The Conformational Equilibrium of the Neuropeptide Y2 Receptor in Bilayer Membranes |
title_short | The Conformational Equilibrium of the Neuropeptide Y2 Receptor in Bilayer Membranes |
title_sort | conformational equilibrium of the neuropeptide y2 receptor in bilayer membranes |
topic | Research Articles |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7736470/ https://www.ncbi.nlm.nih.gov/pubmed/32790043 http://dx.doi.org/10.1002/anie.202006075 |
work_keys_str_mv | AT krugulrike theconformationalequilibriumoftheneuropeptidey2receptorinbilayermembranes AT glogeanika theconformationalequilibriumoftheneuropeptidey2receptorinbilayermembranes AT schmidtpeter theconformationalequilibriumoftheneuropeptidey2receptorinbilayermembranes AT beckerbaldusjohanna theconformationalequilibriumoftheneuropeptidey2receptorinbilayermembranes AT bernhardfrank theconformationalequilibriumoftheneuropeptidey2receptorinbilayermembranes AT kaiseranette theconformationalequilibriumoftheneuropeptidey2receptorinbilayermembranes AT montagcindy theconformationalequilibriumoftheneuropeptidey2receptorinbilayermembranes AT gauglitzmarcel theconformationalequilibriumoftheneuropeptidey2receptorinbilayermembranes AT vishnivetskiysergeya theconformationalequilibriumoftheneuropeptidey2receptorinbilayermembranes AT gurevichvsevolodv theconformationalequilibriumoftheneuropeptidey2receptorinbilayermembranes AT becksickingerannetteg theconformationalequilibriumoftheneuropeptidey2receptorinbilayermembranes AT glaubitzclemens theconformationalequilibriumoftheneuropeptidey2receptorinbilayermembranes AT husterdaniel theconformationalequilibriumoftheneuropeptidey2receptorinbilayermembranes AT krugulrike conformationalequilibriumoftheneuropeptidey2receptorinbilayermembranes AT glogeanika conformationalequilibriumoftheneuropeptidey2receptorinbilayermembranes AT schmidtpeter conformationalequilibriumoftheneuropeptidey2receptorinbilayermembranes AT beckerbaldusjohanna conformationalequilibriumoftheneuropeptidey2receptorinbilayermembranes AT bernhardfrank conformationalequilibriumoftheneuropeptidey2receptorinbilayermembranes AT kaiseranette conformationalequilibriumoftheneuropeptidey2receptorinbilayermembranes AT montagcindy conformationalequilibriumoftheneuropeptidey2receptorinbilayermembranes AT gauglitzmarcel conformationalequilibriumoftheneuropeptidey2receptorinbilayermembranes AT vishnivetskiysergeya conformationalequilibriumoftheneuropeptidey2receptorinbilayermembranes AT gurevichvsevolodv conformationalequilibriumoftheneuropeptidey2receptorinbilayermembranes AT becksickingerannetteg conformationalequilibriumoftheneuropeptidey2receptorinbilayermembranes AT glaubitzclemens conformationalequilibriumoftheneuropeptidey2receptorinbilayermembranes AT husterdaniel conformationalequilibriumoftheneuropeptidey2receptorinbilayermembranes |