Cargando…

The Conformational Equilibrium of the Neuropeptide Y2 Receptor in Bilayer Membranes

Dynamic structural transitions within the seven‐transmembrane bundle represent the mechanism by which G‐protein‐coupled receptors convert an extracellular chemical signal into an intracellular biological function. Here, the conformational dynamics of the neuropeptide Y receptor type 2 (Y2R) during a...

Descripción completa

Detalles Bibliográficos
Autores principales: Krug, Ulrike, Gloge, Anika, Schmidt, Peter, Becker‐Baldus, Johanna, Bernhard, Frank, Kaiser, Anette, Montag, Cindy, Gauglitz, Marcel, Vishnivetskiy, Sergey A., Gurevich, Vsevolod V., Beck‐Sickinger, Annette G., Glaubitz, Clemens, Huster, Daniel
Formato: Online Artículo Texto
Lenguaje:English
Publicado: John Wiley and Sons Inc. 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7736470/
https://www.ncbi.nlm.nih.gov/pubmed/32790043
http://dx.doi.org/10.1002/anie.202006075
_version_ 1783622789745344512
author Krug, Ulrike
Gloge, Anika
Schmidt, Peter
Becker‐Baldus, Johanna
Bernhard, Frank
Kaiser, Anette
Montag, Cindy
Gauglitz, Marcel
Vishnivetskiy, Sergey A.
Gurevich, Vsevolod V.
Beck‐Sickinger, Annette G.
Glaubitz, Clemens
Huster, Daniel
author_facet Krug, Ulrike
Gloge, Anika
Schmidt, Peter
Becker‐Baldus, Johanna
Bernhard, Frank
Kaiser, Anette
Montag, Cindy
Gauglitz, Marcel
Vishnivetskiy, Sergey A.
Gurevich, Vsevolod V.
Beck‐Sickinger, Annette G.
Glaubitz, Clemens
Huster, Daniel
author_sort Krug, Ulrike
collection PubMed
description Dynamic structural transitions within the seven‐transmembrane bundle represent the mechanism by which G‐protein‐coupled receptors convert an extracellular chemical signal into an intracellular biological function. Here, the conformational dynamics of the neuropeptide Y receptor type 2 (Y2R) during activation was investigated. The apo, full agonist‐, and arrestin‐bound states of Y2R were prepared by cell‐free expression, functional refolding, and reconstitution into lipid membranes. To study conformational transitions between these states, all six tryptophans of Y2R were (13)C‐labeled. NMR‐signal assignment was achieved by dynamic‐nuclear‐polarization enhancement and the individual functional states of the receptor were characterized by monitoring (13)C NMR chemical shifts. Activation of Y2R is mediated by molecular switches involving the toggle switch residue Trp281(6.48) of the highly conserved SWLP motif and Trp327(7.55) adjacent to the NPxxY motif. Furthermore, a conformationally preserved “cysteine lock”‐Trp116(23.50) was identified.
format Online
Article
Text
id pubmed-7736470
institution National Center for Biotechnology Information
language English
publishDate 2020
publisher John Wiley and Sons Inc.
record_format MEDLINE/PubMed
spelling pubmed-77364702020-12-28 The Conformational Equilibrium of the Neuropeptide Y2 Receptor in Bilayer Membranes Krug, Ulrike Gloge, Anika Schmidt, Peter Becker‐Baldus, Johanna Bernhard, Frank Kaiser, Anette Montag, Cindy Gauglitz, Marcel Vishnivetskiy, Sergey A. Gurevich, Vsevolod V. Beck‐Sickinger, Annette G. Glaubitz, Clemens Huster, Daniel Angew Chem Int Ed Engl Research Articles Dynamic structural transitions within the seven‐transmembrane bundle represent the mechanism by which G‐protein‐coupled receptors convert an extracellular chemical signal into an intracellular biological function. Here, the conformational dynamics of the neuropeptide Y receptor type 2 (Y2R) during activation was investigated. The apo, full agonist‐, and arrestin‐bound states of Y2R were prepared by cell‐free expression, functional refolding, and reconstitution into lipid membranes. To study conformational transitions between these states, all six tryptophans of Y2R were (13)C‐labeled. NMR‐signal assignment was achieved by dynamic‐nuclear‐polarization enhancement and the individual functional states of the receptor were characterized by monitoring (13)C NMR chemical shifts. Activation of Y2R is mediated by molecular switches involving the toggle switch residue Trp281(6.48) of the highly conserved SWLP motif and Trp327(7.55) adjacent to the NPxxY motif. Furthermore, a conformationally preserved “cysteine lock”‐Trp116(23.50) was identified. John Wiley and Sons Inc. 2020-09-30 2020-12-21 /pmc/articles/PMC7736470/ /pubmed/32790043 http://dx.doi.org/10.1002/anie.202006075 Text en © 2020 The Authors. Published by Wiley-VCH GmbH This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
spellingShingle Research Articles
Krug, Ulrike
Gloge, Anika
Schmidt, Peter
Becker‐Baldus, Johanna
Bernhard, Frank
Kaiser, Anette
Montag, Cindy
Gauglitz, Marcel
Vishnivetskiy, Sergey A.
Gurevich, Vsevolod V.
Beck‐Sickinger, Annette G.
Glaubitz, Clemens
Huster, Daniel
The Conformational Equilibrium of the Neuropeptide Y2 Receptor in Bilayer Membranes
title The Conformational Equilibrium of the Neuropeptide Y2 Receptor in Bilayer Membranes
title_full The Conformational Equilibrium of the Neuropeptide Y2 Receptor in Bilayer Membranes
title_fullStr The Conformational Equilibrium of the Neuropeptide Y2 Receptor in Bilayer Membranes
title_full_unstemmed The Conformational Equilibrium of the Neuropeptide Y2 Receptor in Bilayer Membranes
title_short The Conformational Equilibrium of the Neuropeptide Y2 Receptor in Bilayer Membranes
title_sort conformational equilibrium of the neuropeptide y2 receptor in bilayer membranes
topic Research Articles
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7736470/
https://www.ncbi.nlm.nih.gov/pubmed/32790043
http://dx.doi.org/10.1002/anie.202006075
work_keys_str_mv AT krugulrike theconformationalequilibriumoftheneuropeptidey2receptorinbilayermembranes
AT glogeanika theconformationalequilibriumoftheneuropeptidey2receptorinbilayermembranes
AT schmidtpeter theconformationalequilibriumoftheneuropeptidey2receptorinbilayermembranes
AT beckerbaldusjohanna theconformationalequilibriumoftheneuropeptidey2receptorinbilayermembranes
AT bernhardfrank theconformationalequilibriumoftheneuropeptidey2receptorinbilayermembranes
AT kaiseranette theconformationalequilibriumoftheneuropeptidey2receptorinbilayermembranes
AT montagcindy theconformationalequilibriumoftheneuropeptidey2receptorinbilayermembranes
AT gauglitzmarcel theconformationalequilibriumoftheneuropeptidey2receptorinbilayermembranes
AT vishnivetskiysergeya theconformationalequilibriumoftheneuropeptidey2receptorinbilayermembranes
AT gurevichvsevolodv theconformationalequilibriumoftheneuropeptidey2receptorinbilayermembranes
AT becksickingerannetteg theconformationalequilibriumoftheneuropeptidey2receptorinbilayermembranes
AT glaubitzclemens theconformationalequilibriumoftheneuropeptidey2receptorinbilayermembranes
AT husterdaniel theconformationalequilibriumoftheneuropeptidey2receptorinbilayermembranes
AT krugulrike conformationalequilibriumoftheneuropeptidey2receptorinbilayermembranes
AT glogeanika conformationalequilibriumoftheneuropeptidey2receptorinbilayermembranes
AT schmidtpeter conformationalequilibriumoftheneuropeptidey2receptorinbilayermembranes
AT beckerbaldusjohanna conformationalequilibriumoftheneuropeptidey2receptorinbilayermembranes
AT bernhardfrank conformationalequilibriumoftheneuropeptidey2receptorinbilayermembranes
AT kaiseranette conformationalequilibriumoftheneuropeptidey2receptorinbilayermembranes
AT montagcindy conformationalequilibriumoftheneuropeptidey2receptorinbilayermembranes
AT gauglitzmarcel conformationalequilibriumoftheneuropeptidey2receptorinbilayermembranes
AT vishnivetskiysergeya conformationalequilibriumoftheneuropeptidey2receptorinbilayermembranes
AT gurevichvsevolodv conformationalequilibriumoftheneuropeptidey2receptorinbilayermembranes
AT becksickingerannetteg conformationalequilibriumoftheneuropeptidey2receptorinbilayermembranes
AT glaubitzclemens conformationalequilibriumoftheneuropeptidey2receptorinbilayermembranes
AT husterdaniel conformationalequilibriumoftheneuropeptidey2receptorinbilayermembranes