Cargando…

Activation of the IRE1 RNase through remodeling of the kinase front pocket by ATP-competitive ligands

Inositol-Requiring Enzyme 1 (IRE1) is an essential component of the Unfolded Protein Response. IRE1 spans the endoplasmic reticulum membrane, comprising a sensory lumenal domain, and tandem kinase and endoribonuclease (RNase) cytoplasmic domains. Excess unfolded proteins in the ER lumen induce dimer...

Descripción completa

Detalles Bibliográficos
Autores principales: Ferri, Elena, Le Thomas, Adrien, Wallweber, Heidi Ackerly, Day, Eric S., Walters, Benjamin T., Kaufman, Susan E., Braun, Marie-Gabrielle, Clark, Kevin R., Beresini, Maureen H., Mortara, Kyle, Chen, Yung-Chia A., Canter, Breanna, Phung, Wilson, Liu, Peter S., Lammens, Alfred, Ashkenazi, Avi, Rudolph, Joachim, Wang, Weiru
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Nature Publishing Group UK 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7736581/
https://www.ncbi.nlm.nih.gov/pubmed/33318494
http://dx.doi.org/10.1038/s41467-020-19974-5
Descripción
Sumario:Inositol-Requiring Enzyme 1 (IRE1) is an essential component of the Unfolded Protein Response. IRE1 spans the endoplasmic reticulum membrane, comprising a sensory lumenal domain, and tandem kinase and endoribonuclease (RNase) cytoplasmic domains. Excess unfolded proteins in the ER lumen induce dimerization and oligomerization of IRE1, triggering kinase trans-autophosphorylation and RNase activation. Known ATP-competitive small-molecule IRE1 kinase inhibitors either allosterically disrupt or stabilize the active dimeric unit, accordingly inhibiting or stimulating RNase activity. Previous allosteric RNase activators display poor selectivity and/or weak cellular activity. In this study, we describe a class of ATP-competitive RNase activators possessing high selectivity and strong cellular activity. This class of activators binds IRE1 in the kinase front pocket, leading to a distinct conformation of the activation loop. Our findings reveal exquisitely precise interdomain regulation within IRE1, advancing the mechanistic understanding of this important enzyme and its investigation as a potential small-molecule therapeutic target.