Cargando…
Integrating genome sequence and structural data for statistical learning to predict transcription factor binding sites
We report an approach to predict DNA specificity of the tetracycline repressor (TetR) family transcription regulators (TFRs). First, a genome sequence-based method was streamlined with quantitative P-values defined to filter out reliable predictions. Then, a framework was introduced to incorporate s...
Autores principales: | Long, Pengpeng, Zhang, Lu, Huang, Bin, Chen, Quan, Liu, Haiyan |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Oxford University Press
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7736823/ https://www.ncbi.nlm.nih.gov/pubmed/33264415 http://dx.doi.org/10.1093/nar/gkaa1134 |
Ejemplares similares
-
Pseudocounts for transcription factor binding sites
por: Nishida, Keishin, et al.
Publicado: (2009) -
On the detection and refinement of transcription factor binding sites using ChIP-Seq data
por: Hu, Ming, et al.
Publicado: (2010) -
Binding site discovery from nucleic acid sequences by discriminative learning of hidden Markov models
por: Maaskola, Jonas, et al.
Publicado: (2014) -
Subtypes of associated protein–DNA (Transcription Factor-Transcription Factor Binding Site) patterns
por: Chan, Tak-Ming, et al.
Publicado: (2012) -
A statistical learning approach to the modeling of chromatographic retention of oligonucleotides incorporating sequence and secondary structure data
por: Sturm, Marc, et al.
Publicado: (2007)