Cargando…

The diagnostic performance of quantitative mapping in breast cancer patients: a preliminary study using synthetic MRI

BACKGROUND: Previous studies have indicated that quantitative MRI (qMR) is beneficial for diagnosis of breast cancer. As a novel qMR technology, synthetic MRI (syMRI) may be advantageous by offering simultaneous generation of T1 and T2 mapping in one scan within a few minutes and without concern to...

Descripción completa

Detalles Bibliográficos
Autores principales: Meng, Tiebao, He, Ni, He, Haoqiang, Liu, Kuiyuan, Ke, Liangru, Liu, Huiming, Zhong, Linchang, Huang, Chenghui, Yang, Anli, Zhou, Chunyan, Qian, Long, Xie, Chuanmiao
Formato: Online Artículo Texto
Lenguaje:English
Publicado: BioMed Central 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7737277/
https://www.ncbi.nlm.nih.gov/pubmed/33317609
http://dx.doi.org/10.1186/s40644-020-00365-4
Descripción
Sumario:BACKGROUND: Previous studies have indicated that quantitative MRI (qMR) is beneficial for diagnosis of breast cancer. As a novel qMR technology, synthetic MRI (syMRI) may be advantageous by offering simultaneous generation of T1 and T2 mapping in one scan within a few minutes and without concern to the deposition of the gadolinium contrast agent in cell nucleus. In this study, the potential of quantitative mapping derived from Synthetic MRI (SyMRI) to diagnose breast cancer was investigated. METHODS: From April 2018 to May 2019, a total of 87 patients with suspicious breast lesions underwent both conventional and SyMRI before treatment. The quantitative metrics derived from SyMRI, including T1 and T2 values, were measured in breast lesions. The diagnostic performance of SyMRI was evaluated with unpaired Student’s t-tests, receiver operating characteristic curve analysis and multivariate logistic regression analysis. The AUCs of quantitative values were compared using Delong test. RESULTS: Among 77 patients who met the inclusion criteria, 48 were diagnosed with histopathological confirmed breast cancers, and the rest had benign lesions. The breast cancers showed significantly higher T1 (1611.61 ± 215.88 ms) values and lower T2 (80.93 ± 7.51 ms) values than benign lesions. The area under the ROC curve (AUC) values were 0.931 (95% CI: 0.874–0.989) and 0.883 (95% CI: 0.810–0.956) for T1 and T2 maps, respectively, in diagnostic discrimination between breast cancers and benign lesions. A slightly increased AUC of 0.978 (95% CI: 0.915–0.993) was achieved by combining those two relaxation-based quantitative metrics. CONCLUSION: In conclusion, our preliminary study showed that the quantitative T1 and T2 values obtained by SyMRI could distinguish effectively between benign and malignant breast lesions, and T1 relaxation time showed the highest diagnostic efficiency. Furthermore, combining the two quantitative relaxation metrics further improved their diagnostic performance.