Cargando…

Determination of a “Specific Population Who Could Benefit From Rosuvastatin”: A Secondary Analysis of a Randomized Controlled Trial to Uncover the Novel Value of Rosuvastatin for the Precise Treatment of ARDS

Background: The high heterogeneity of acute respiratory distress syndrome (ARDS) contributes to paradoxical conclusions from previous investigations of rosuvastatin for ARDS. Identification of the population (phenotype) that could benefit from rosuvastatin is a novel exploration for the precise trea...

Descripción completa

Detalles Bibliográficos
Autores principales: Zhang, Shi, Lu, Zhonghua, Wu, Zongsheng, Xie, Jianfeng, Yang, Yi, Qiu, Haibo
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Frontiers Media S.A. 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7737567/
https://www.ncbi.nlm.nih.gov/pubmed/33335905
http://dx.doi.org/10.3389/fmed.2020.598621
Descripción
Sumario:Background: The high heterogeneity of acute respiratory distress syndrome (ARDS) contributes to paradoxical conclusions from previous investigations of rosuvastatin for ARDS. Identification of the population (phenotype) that could benefit from rosuvastatin is a novel exploration for the precise treatment. Methods: The patient population for this analysis consisted of unique patients with ARDS enrolled in the SAILS trial (rosuvastatin vs. placebo). Phenotypes were derived using consensus k-means clustering applied to routinely available clinical variables within 6 h of hospital presentation before the patients received placebo or rosuvastatin. The Kaplan–Meier statistic was used to estimate the 90-day cumulative mortality to screen for a specific population that could benefit from rosuvastatin, with a cutoff P < 0.05. Results: The derivation cohort included 585 patients with ARDS. Of the patients with the four derived phenotypes, those with phenotype 3 were classified as the “specific population who could benefit from rosuvastatin” as rosuvastatin resulted in a significant reduction in 90-day cumulative mortality from ARDS [hazard ratio (HR), 0.29; 95% confidence interval (CI), 0.09–0.93; P = 0.027]. Additionally, rosuvastatin markedly improved the days free of cardiovascular failure (10.08 ± 3.79 in the rosuvastatin group vs. 7.31 ± 4.94 in the placebo group, P = 0.01) and coagulation abnormalities (13.65 ± 1.33 vs. 12.15 ± 3.77, P = 0.02) up to day 14 in the phenotype 3 cohort. Phenotype 3 was summarized as Platelet(high) & Creat(low) phenotype because these patients have a relatively higher platelet count (390.05 ± 79.43 × 10(9)/L) and lower creatinine (1.42 ± 1.08 mg/dL) than do patients classified as other phenotypes. In addition, rosuvastatin seemed to increase 90-day mortality for patients classified as phenotype 4 (HR, 2.76; 95% CI, 0.09–9.93; P = 0.076), with an adverse effect on reducing the days free of renal failure up to day 14 (4.70 ± 4.99 vs. 10.17 ± 4.69, P = 0.01). Patients in phenotype 4 showed relatively severe illness in terms of baseline features, particularly renal failure, with high serum glucose. Therefore, phenotype 4 was defined as APACHE(high) & Serum glucose(high) phenotype. Conclusions: This secondary analysis of the SAILS trial identified that rosuvastatin seems to be harmful for patients classified as APACHE(high) & Serum glucose(high) phenotype, but benefit patients in Platelet(high) & Creat(low) phenotype, thus uncovering the novel value of rosuvastatin for the precise treatment of ARDS.