Cargando…

Doses for experiments with microbeams and microcrystals: Monte Carlo simulations in RADDOSE‐3D

Increasingly, microbeams and microcrystals are being used for macromolecular crystallography (MX) experiments at synchrotrons. However, radiation damage remains a major concern since it is a fundamental limiting factor affecting the success of macromolecular structure determination. The rate of radi...

Descripción completa

Detalles Bibliográficos
Autores principales: Dickerson, Joshua L., Garman, Elspeth F.
Formato: Online Artículo Texto
Lenguaje:English
Publicado: John Wiley & Sons, Inc. 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7737758/
https://www.ncbi.nlm.nih.gov/pubmed/32734633
http://dx.doi.org/10.1002/pro.3922
_version_ 1783622989658456064
author Dickerson, Joshua L.
Garman, Elspeth F.
author_facet Dickerson, Joshua L.
Garman, Elspeth F.
author_sort Dickerson, Joshua L.
collection PubMed
description Increasingly, microbeams and microcrystals are being used for macromolecular crystallography (MX) experiments at synchrotrons. However, radiation damage remains a major concern since it is a fundamental limiting factor affecting the success of macromolecular structure determination. The rate of radiation damage at cryotemperatures is known to be proportional to the absorbed dose, so to optimize experimental outcomes, accurate dose calculations are required which take into account the physics of the interactions of the crystal constituents. The program RADDOSE‐3D estimates the dose absorbed by samples during MX data collection at synchrotron sources, allowing direct comparison of radiation damage between experiments carried out with different samples and beam parameters. This has aided the study of MX radiation damage and enabled prediction of approximately when it will manifest in diffraction patterns so it can potentially be avoided. However, the probability of photoelectron escape from the sample and entry from the surrounding material has not previously been included in RADDOSE‐3D, leading to potentially inaccurate does estimates for experiments using microbeams or microcrystals. We present an extension to RADDOSE‐3D which performs Monte Carlo simulations of a rotating crystal during MX data collection, taking into account the redistribution of photoelectrons produced both in the sample and the material surrounding the crystal. As well as providing more accurate dose estimates, the Monte Carlo simulations highlight the importance of the size and composition of the surrounding material on the dose and thus the rate of radiation damage to the sample. Minimizing irradiation of the surrounding material or removing it almost completely will be key to extending the lifetime of microcrystals and enhancing the potential benefits of using higher incident X‐ray energies.
format Online
Article
Text
id pubmed-7737758
institution National Center for Biotechnology Information
language English
publishDate 2020
publisher John Wiley & Sons, Inc.
record_format MEDLINE/PubMed
spelling pubmed-77377582020-12-18 Doses for experiments with microbeams and microcrystals: Monte Carlo simulations in RADDOSE‐3D Dickerson, Joshua L. Garman, Elspeth F. Protein Sci Tools for Protein Science Increasingly, microbeams and microcrystals are being used for macromolecular crystallography (MX) experiments at synchrotrons. However, radiation damage remains a major concern since it is a fundamental limiting factor affecting the success of macromolecular structure determination. The rate of radiation damage at cryotemperatures is known to be proportional to the absorbed dose, so to optimize experimental outcomes, accurate dose calculations are required which take into account the physics of the interactions of the crystal constituents. The program RADDOSE‐3D estimates the dose absorbed by samples during MX data collection at synchrotron sources, allowing direct comparison of radiation damage between experiments carried out with different samples and beam parameters. This has aided the study of MX radiation damage and enabled prediction of approximately when it will manifest in diffraction patterns so it can potentially be avoided. However, the probability of photoelectron escape from the sample and entry from the surrounding material has not previously been included in RADDOSE‐3D, leading to potentially inaccurate does estimates for experiments using microbeams or microcrystals. We present an extension to RADDOSE‐3D which performs Monte Carlo simulations of a rotating crystal during MX data collection, taking into account the redistribution of photoelectrons produced both in the sample and the material surrounding the crystal. As well as providing more accurate dose estimates, the Monte Carlo simulations highlight the importance of the size and composition of the surrounding material on the dose and thus the rate of radiation damage to the sample. Minimizing irradiation of the surrounding material or removing it almost completely will be key to extending the lifetime of microcrystals and enhancing the potential benefits of using higher incident X‐ray energies. John Wiley & Sons, Inc. 2020-08-18 2021-01 /pmc/articles/PMC7737758/ /pubmed/32734633 http://dx.doi.org/10.1002/pro.3922 Text en © 2020 The Authors. Protein Science published by Wiley Periodicals LLC on behalf of The Protein Society. This is an open access article under the terms of the http://creativecommons.org/licenses/by/4.0/ License, which permits use, distribution and reproduction in any medium, provided the original work is properly cited.
spellingShingle Tools for Protein Science
Dickerson, Joshua L.
Garman, Elspeth F.
Doses for experiments with microbeams and microcrystals: Monte Carlo simulations in RADDOSE‐3D
title Doses for experiments with microbeams and microcrystals: Monte Carlo simulations in RADDOSE‐3D
title_full Doses for experiments with microbeams and microcrystals: Monte Carlo simulations in RADDOSE‐3D
title_fullStr Doses for experiments with microbeams and microcrystals: Monte Carlo simulations in RADDOSE‐3D
title_full_unstemmed Doses for experiments with microbeams and microcrystals: Monte Carlo simulations in RADDOSE‐3D
title_short Doses for experiments with microbeams and microcrystals: Monte Carlo simulations in RADDOSE‐3D
title_sort doses for experiments with microbeams and microcrystals: monte carlo simulations in raddose‐3d
topic Tools for Protein Science
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7737758/
https://www.ncbi.nlm.nih.gov/pubmed/32734633
http://dx.doi.org/10.1002/pro.3922
work_keys_str_mv AT dickersonjoshual dosesforexperimentswithmicrobeamsandmicrocrystalsmontecarlosimulationsinraddose3d
AT garmanelspethf dosesforexperimentswithmicrobeamsandmicrocrystalsmontecarlosimulationsinraddose3d