Cargando…
Modeling Large Sparse Data for Feature Selection: Hospital Admission Predictions of the Dementia Patients Using Primary Care Electronic Health Records
A growing elderly population suffering from incurable, chronic conditions such as dementia present a continual strain on medical services due to mental impairment paired with high comorbidity resulting in increased hospitalization risk. The identification of at risk individuals allows for preventati...
Formato: | Online Artículo Texto |
---|---|
Lenguaje: | English |
Publicado: |
IEEE
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7737850/ https://www.ncbi.nlm.nih.gov/pubmed/33354439 http://dx.doi.org/10.1109/JTEHM.2020.3040236 |
Ejemplares similares
-
Comparison of dementia recorded in routinely collected hospital admission data in England with dementia recorded in primary care
por: Brown, Anna, et al.
Publicado: (2016) -
Validation of dementia coding in hospital admissions, death and primary care data
por: Wilkinson, Tim, et al.
Publicado: (2017) -
Cancer recording in patients with type 2 diabetes in primary care and hospital admission data
por: Banerjee, Amitava, et al.
Publicado: (2017) -
Sparse feature selection for classification and prediction of metastasis in endometrial cancer
por: Ahsen, Mehmet Eren, et al.
Publicado: (2017) -
Temporal condition pattern mining in large, sparse electronic health record data: A case study in characterizing pediatric asthma
por: Campbell, Elizabeth A, et al.
Publicado: (2020)