Cargando…
GABA and glutamate in pediatric migraine
Migraine is one of the top 5 most prevalent childhood diseases; however, effective treatment strategies for pediatric migraine are limited. For example, standard adult pharmaceutical therapies are less effective in children and can carry undesirable side effects. To develop more effective treatments...
Autores principales: | , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Wolters Kluwer
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7737876/ https://www.ncbi.nlm.nih.gov/pubmed/33326202 http://dx.doi.org/10.1097/j.pain.0000000000002022 |
_version_ | 1783623012010950656 |
---|---|
author | Bell, Tiffany Stokoe, Mehak Khaira, Akashroop Webb, Megan Noel, Melanie Amoozegar, Farnaz Harris, Ashley D. |
author_facet | Bell, Tiffany Stokoe, Mehak Khaira, Akashroop Webb, Megan Noel, Melanie Amoozegar, Farnaz Harris, Ashley D. |
author_sort | Bell, Tiffany |
collection | PubMed |
description | Migraine is one of the top 5 most prevalent childhood diseases; however, effective treatment strategies for pediatric migraine are limited. For example, standard adult pharmaceutical therapies are less effective in children and can carry undesirable side effects. To develop more effective treatments, improved knowledge of the biology underlying pediatric migraine is necessary. One theory is that migraine results from an imbalance in cortical excitability. Magnetic resonance spectroscopy (MRS) studies show changes in GABA and glutamate levels (the primary inhibitory and excitatory neurotransmitters in the brain, respectively) in multiple brain regions in adults with migraine; however, they have yet to be assessed in children with migraine. Using MRS and GABA-edited MRS, we show that children (7-13 years) with migraine and aura had significantly lower glutamate levels in the visual cortex compared to controls, the opposite to results seen in adults. In addition, we found significant correlations between metabolite levels and migraine characteristics; higher GABA levels were associated with higher migraine burden. We also found that higher glutamate in the thalamus and higher GABA/Glx ratios in the sensorimotor cortex were associated with duration since diagnosis, i.e., having migraines longer. Lower GABA levels in the sensorimotor cortex were associated with being closer to their next migraine attack. Together, this indicates that GABA and glutamate disturbances occur early in migraine pathophysiology and emphasizes that evidence from adults with migraine cannot be immediately translated to pediatric sufferers. This highlights the need for further mechanistic studies of migraine in children, to aid in development of more effective treatments. |
format | Online Article Text |
id | pubmed-7737876 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | Wolters Kluwer |
record_format | MEDLINE/PubMed |
spelling | pubmed-77378762020-12-22 GABA and glutamate in pediatric migraine Bell, Tiffany Stokoe, Mehak Khaira, Akashroop Webb, Megan Noel, Melanie Amoozegar, Farnaz Harris, Ashley D. Pain Research Paper Migraine is one of the top 5 most prevalent childhood diseases; however, effective treatment strategies for pediatric migraine are limited. For example, standard adult pharmaceutical therapies are less effective in children and can carry undesirable side effects. To develop more effective treatments, improved knowledge of the biology underlying pediatric migraine is necessary. One theory is that migraine results from an imbalance in cortical excitability. Magnetic resonance spectroscopy (MRS) studies show changes in GABA and glutamate levels (the primary inhibitory and excitatory neurotransmitters in the brain, respectively) in multiple brain regions in adults with migraine; however, they have yet to be assessed in children with migraine. Using MRS and GABA-edited MRS, we show that children (7-13 years) with migraine and aura had significantly lower glutamate levels in the visual cortex compared to controls, the opposite to results seen in adults. In addition, we found significant correlations between metabolite levels and migraine characteristics; higher GABA levels were associated with higher migraine burden. We also found that higher glutamate in the thalamus and higher GABA/Glx ratios in the sensorimotor cortex were associated with duration since diagnosis, i.e., having migraines longer. Lower GABA levels in the sensorimotor cortex were associated with being closer to their next migraine attack. Together, this indicates that GABA and glutamate disturbances occur early in migraine pathophysiology and emphasizes that evidence from adults with migraine cannot be immediately translated to pediatric sufferers. This highlights the need for further mechanistic studies of migraine in children, to aid in development of more effective treatments. Wolters Kluwer 2021-01 2020-07-28 /pmc/articles/PMC7737876/ /pubmed/33326202 http://dx.doi.org/10.1097/j.pain.0000000000002022 Text en Copyright © 2020 The Author(s). Published by Wolters Kluwer Health, Inc. on behalf of the International Association for the Study of Pain. This is an open access article distributed under the terms of the Creative Commons Attribution-Non Commercial-No Derivatives License 4.0 (CCBY-NC-ND) (http://creativecommons.org/licenses/by-nc-nd/4.0/) , where it is permissible to download and share the work provided it is properly cited. The work cannot be changed in any way or used commercially without permission from the journal. |
spellingShingle | Research Paper Bell, Tiffany Stokoe, Mehak Khaira, Akashroop Webb, Megan Noel, Melanie Amoozegar, Farnaz Harris, Ashley D. GABA and glutamate in pediatric migraine |
title | GABA and glutamate in pediatric migraine |
title_full | GABA and glutamate in pediatric migraine |
title_fullStr | GABA and glutamate in pediatric migraine |
title_full_unstemmed | GABA and glutamate in pediatric migraine |
title_short | GABA and glutamate in pediatric migraine |
title_sort | gaba and glutamate in pediatric migraine |
topic | Research Paper |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7737876/ https://www.ncbi.nlm.nih.gov/pubmed/33326202 http://dx.doi.org/10.1097/j.pain.0000000000002022 |
work_keys_str_mv | AT belltiffany gabaandglutamateinpediatricmigraine AT stokoemehak gabaandglutamateinpediatricmigraine AT khairaakashroop gabaandglutamateinpediatricmigraine AT webbmegan gabaandglutamateinpediatricmigraine AT noelmelanie gabaandglutamateinpediatricmigraine AT amoozegarfarnaz gabaandglutamateinpediatricmigraine AT harrisashleyd gabaandglutamateinpediatricmigraine |