Cargando…

METTL14 Overexpression Promotes Osteosarcoma Cell Apoptosis and Slows Tumor Progression via Caspase 3 Activation

BACKGROUND: As a key enzyme of m(6)A methylation modification, methyltransferase-like 14 (METTL14) is involved in many physiological and pathophysiological processes. This study aims to explore the effect of METTL14 on the viability of osteosarcoma cells and explain the underlying molecular mechanis...

Descripción completa

Detalles Bibliográficos
Autores principales: Liu, Ziwen, Liu, Ning, Huang, Zhipeng, Wang, Wenbo
Formato: Online Artículo Texto
Lenguaje:English
Publicado: Dove 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7737940/
https://www.ncbi.nlm.nih.gov/pubmed/33335426
http://dx.doi.org/10.2147/CMAR.S284273
Descripción
Sumario:BACKGROUND: As a key enzyme of m(6)A methylation modification, methyltransferase-like 14 (METTL14) is involved in many physiological and pathophysiological processes. This study aims to explore the effect of METTL14 on the viability of osteosarcoma cells and explain the underlying molecular mechanism. METHODS: We detected the content of METTL14 in osteosarcoma tissue by qRT-PCR and Western blot. Experiments such as transwell, EdU, and CCK-8 have demonstrated the effect of METTL14 on osteosarcoma cell activity. In addition, the regulation of caspase-3 by METL14 was determined by Western blot. We used caspase-3 inhibitor to further reverse the effect of METTL14 on osteosarcoma cell apoptosis. RESULTS: We found that the expression of METTL14 in osteosarcoma cells was reduced compared with normal tissues. METTL14 overexpression significantly reduced the proliferation, migration, invasion and apoptosis of osteosarcoma cells. Inhibition of METL14 showed the opposite result. We have demonstrated that METTL14 finally achieves apoptosis by activating caspase-3. CONCLUSION: We have demonstrated that METTL14 has effects on osteosarcoma cell proliferation, migration, and invasion and promotes cell apoptosis by activating caspase-3, which may become a potential therapeutic target for osteosarcoma.