Cargando…
Adversarial attack on deep learning-based dermatoscopic image recognition systems: Risk of misdiagnosis due to undetectable image perturbations
Deep learning algorithms have shown excellent performances in the field of medical image recognition, and practical applications have been made in several medical domains. Little is known about the feasibility and impact of an undetectable adversarial attacks, which can disrupt an algorithm by modif...
Autores principales: | Allyn, Jérôme, Allou, Nicolas, Vidal, Charles, Renou, Amélie, Ferdynus, Cyril |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Lippincott Williams & Wilkins
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7738012/ https://www.ncbi.nlm.nih.gov/pubmed/33327315 http://dx.doi.org/10.1097/MD.0000000000023568 |
Ejemplares similares
-
Image augmentation and automated measurement of endotracheal-tube-to-carina distance on chest radiographs in intensive care unit using a deep learning model with external validation
por: Oliver, Matthieu, et al.
Publicado: (2023) -
Comparison of the sensitivity of mammography, ultrasound, magnetic resonance imaging and combinations of these imaging modalities for the detection of small (≤2 cm) breast cancer
por: Chen, Hai-long, et al.
Publicado: (2021) -
Imaging diagnosis of orbital Wegener granulomatosis: A rare case report
por: Yang, Bin, et al.
Publicado: (2017) -
Microflow imaging of contrast-enhanced ultrasound for evaluation of neovascularization in peripheral lung cancer
por: Wang, Song, et al.
Publicado: (2016) -
Imaging and clinical features of giant multilocular prostatic cystadenoma: A case report
por: Chen, Jingya, et al.
Publicado: (2020)