Cargando…
Family History Information Extraction With Neural Attention and an Enhanced Relation-Side Scheme: Algorithm Development and Validation
BACKGROUND: Identifying and extracting family history information (FHI) from clinical reports are significant for recognizing disease susceptibility. However, FHI is usually described in a narrative manner within patients’ electronic health records, which requires the application of natural language...
Autores principales: | Dai, Hong-Jie, Lee, You-Qian, Nekkantti, Chandini, Jonnagaddala, Jitendra |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
JMIR Publications
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7738250/ https://www.ncbi.nlm.nih.gov/pubmed/33258777 http://dx.doi.org/10.2196/21750 |
Ejemplares similares
-
The OpenDeID corpus for patient de-identification
por: Jonnagaddala, Jitendra, et al.
Publicado: (2021) -
Assessing the severity of positive valence symptoms in initial psychiatric evaluation records: Should we use convolutional neural networks?
por: Dai, Hong-Jie, et al.
Publicado: (2018) -
Family member information extraction via neural sequence labeling models with different tag schemes
por: Dai, Hong-Jie
Publicado: (2019) -
Automated Travel History Extraction From Clinical Notes for Informing the Detection of Emergent Infectious Disease Events: Algorithm Development and Validation
por: Peterson, Kelly S, et al.
Publicado: (2021) -
A cross-validation scheme for machine learning algorithms in shotgun proteomics
por: Granholm, Viktor, et al.
Publicado: (2012)