Cargando…
Brain-Age Prediction Using Shallow Machine Learning: Predictive Analytics Competition 2019
As we age, our brain structure changes and our cognitive capabilities decline. Although brain aging is universal, rates of brain aging differ markedly, which can be associated with pathological mechanism of psychiatric and neurological diseases. Predictive models have been applied to neuroimaging da...
Autores principales: | Da Costa, Pedro F., Dafflon, Jessica, Pinaya, Walter H. L. |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Frontiers Media S.A.
2020
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7738323/ https://www.ncbi.nlm.nih.gov/pubmed/33343431 http://dx.doi.org/10.3389/fpsyt.2020.604478 |
Ejemplares similares
-
Ensemble Learning of Convolutional Neural Network, Support Vector Machine, and Best Linear Unbiased Predictor for Brain Age Prediction: ARAMIS Contribution to the Predictive Analytics Competition 2019 Challenge
por: Couvy-Duchesne, Baptiste, et al.
Publicado: (2020) -
Editorial: Predicting Chronological Age From Structural Neuroimaging: The Predictive Analytics Competition 2019
por: Fisch, Lukas, et al.
Publicado: (2021) -
Brain Age Prediction With Morphological Features Using Deep Neural Networks: Results From Predictive Analytic Competition 2019
por: Lombardi, Angela, et al.
Publicado: (2021) -
Brain age prediction: A comparison between machine learning models using region‐ and voxel‐based morphometric data
por: Baecker, Lea, et al.
Publicado: (2021) -
An automated machine learning approach to predict brain age from cortical anatomical measures
por: Dafflon, Jessica, et al.
Publicado: (2020)