Cargando…
Network- and systems-based re-engineering of dendritic cells with non-coding RNAs for cancer immunotherapy
Dendritic cells (DCs) are professional antigen-presenting cells that induce and regulate adaptive immunity by presenting antigens to T cells. Due to their coordinative role in adaptive immune responses, DCs have been used as cell-based therapeutic vaccination against cancer. The capacity of DCs to i...
Autores principales: | , , , , , , , , , , , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
Ivyspring International Publisher
2021
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7738891/ https://www.ncbi.nlm.nih.gov/pubmed/33391542 http://dx.doi.org/10.7150/thno.53092 |
_version_ | 1783623219666747392 |
---|---|
author | Lai, Xin Dreyer, Florian S. Cantone, Martina Eberhardt, Martin Gerer, Kerstin F. Jaitly, Tanushree Uebe, Steffen Lischer, Christopher Ekici, Arif Wittmann, Jürgen Jäck, Hans-Martin Schaft, Niels Dörrie, Jan Vera, Julio |
author_facet | Lai, Xin Dreyer, Florian S. Cantone, Martina Eberhardt, Martin Gerer, Kerstin F. Jaitly, Tanushree Uebe, Steffen Lischer, Christopher Ekici, Arif Wittmann, Jürgen Jäck, Hans-Martin Schaft, Niels Dörrie, Jan Vera, Julio |
author_sort | Lai, Xin |
collection | PubMed |
description | Dendritic cells (DCs) are professional antigen-presenting cells that induce and regulate adaptive immunity by presenting antigens to T cells. Due to their coordinative role in adaptive immune responses, DCs have been used as cell-based therapeutic vaccination against cancer. The capacity of DCs to induce a therapeutic immune response can be enhanced by re-wiring of cellular signalling pathways with microRNAs (miRNAs). Methods: Since the activation and maturation of DCs is controlled by an interconnected signalling network, we deploy an approach that combines RNA sequencing data and systems biology methods to delineate miRNA-based strategies that enhance DC-elicited immune responses. Results: Through RNA sequencing of IKKβ-matured DCs that are currently being tested in a clinical trial on therapeutic anti-cancer vaccination, we identified 44 differentially expressed miRNAs. According to a network analysis, most of these miRNAs regulate targets that are linked to immune pathways, such as cytokine and interleukin signalling. We employed a network topology-oriented scoring model to rank the miRNAs, analysed their impact on immunogenic potency of DCs, and identified dozens of promising miRNA candidates, with miR-15a and miR-16 as the top ones. The results of our analysis are presented in a database that constitutes a tool to identify DC-relevant miRNA-gene interactions with therapeutic potential (https://www.synmirapy.net/dc-optimization). Conclusions: Our approach enables the systematic analysis and identification of functional miRNA-gene interactions that can be experimentally tested for improving DC immunogenic potency. |
format | Online Article Text |
id | pubmed-7738891 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2021 |
publisher | Ivyspring International Publisher |
record_format | MEDLINE/PubMed |
spelling | pubmed-77388912021-01-01 Network- and systems-based re-engineering of dendritic cells with non-coding RNAs for cancer immunotherapy Lai, Xin Dreyer, Florian S. Cantone, Martina Eberhardt, Martin Gerer, Kerstin F. Jaitly, Tanushree Uebe, Steffen Lischer, Christopher Ekici, Arif Wittmann, Jürgen Jäck, Hans-Martin Schaft, Niels Dörrie, Jan Vera, Julio Theranostics Research Paper Dendritic cells (DCs) are professional antigen-presenting cells that induce and regulate adaptive immunity by presenting antigens to T cells. Due to their coordinative role in adaptive immune responses, DCs have been used as cell-based therapeutic vaccination against cancer. The capacity of DCs to induce a therapeutic immune response can be enhanced by re-wiring of cellular signalling pathways with microRNAs (miRNAs). Methods: Since the activation and maturation of DCs is controlled by an interconnected signalling network, we deploy an approach that combines RNA sequencing data and systems biology methods to delineate miRNA-based strategies that enhance DC-elicited immune responses. Results: Through RNA sequencing of IKKβ-matured DCs that are currently being tested in a clinical trial on therapeutic anti-cancer vaccination, we identified 44 differentially expressed miRNAs. According to a network analysis, most of these miRNAs regulate targets that are linked to immune pathways, such as cytokine and interleukin signalling. We employed a network topology-oriented scoring model to rank the miRNAs, analysed their impact on immunogenic potency of DCs, and identified dozens of promising miRNA candidates, with miR-15a and miR-16 as the top ones. The results of our analysis are presented in a database that constitutes a tool to identify DC-relevant miRNA-gene interactions with therapeutic potential (https://www.synmirapy.net/dc-optimization). Conclusions: Our approach enables the systematic analysis and identification of functional miRNA-gene interactions that can be experimentally tested for improving DC immunogenic potency. Ivyspring International Publisher 2021-01-01 /pmc/articles/PMC7738891/ /pubmed/33391542 http://dx.doi.org/10.7150/thno.53092 Text en © The author(s) This is an open access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/). See http://ivyspring.com/terms for full terms and conditions. |
spellingShingle | Research Paper Lai, Xin Dreyer, Florian S. Cantone, Martina Eberhardt, Martin Gerer, Kerstin F. Jaitly, Tanushree Uebe, Steffen Lischer, Christopher Ekici, Arif Wittmann, Jürgen Jäck, Hans-Martin Schaft, Niels Dörrie, Jan Vera, Julio Network- and systems-based re-engineering of dendritic cells with non-coding RNAs for cancer immunotherapy |
title | Network- and systems-based re-engineering of dendritic cells with non-coding RNAs for cancer immunotherapy |
title_full | Network- and systems-based re-engineering of dendritic cells with non-coding RNAs for cancer immunotherapy |
title_fullStr | Network- and systems-based re-engineering of dendritic cells with non-coding RNAs for cancer immunotherapy |
title_full_unstemmed | Network- and systems-based re-engineering of dendritic cells with non-coding RNAs for cancer immunotherapy |
title_short | Network- and systems-based re-engineering of dendritic cells with non-coding RNAs for cancer immunotherapy |
title_sort | network- and systems-based re-engineering of dendritic cells with non-coding rnas for cancer immunotherapy |
topic | Research Paper |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7738891/ https://www.ncbi.nlm.nih.gov/pubmed/33391542 http://dx.doi.org/10.7150/thno.53092 |
work_keys_str_mv | AT laixin networkandsystemsbasedreengineeringofdendriticcellswithnoncodingrnasforcancerimmunotherapy AT dreyerflorians networkandsystemsbasedreengineeringofdendriticcellswithnoncodingrnasforcancerimmunotherapy AT cantonemartina networkandsystemsbasedreengineeringofdendriticcellswithnoncodingrnasforcancerimmunotherapy AT eberhardtmartin networkandsystemsbasedreengineeringofdendriticcellswithnoncodingrnasforcancerimmunotherapy AT gererkerstinf networkandsystemsbasedreengineeringofdendriticcellswithnoncodingrnasforcancerimmunotherapy AT jaitlytanushree networkandsystemsbasedreengineeringofdendriticcellswithnoncodingrnasforcancerimmunotherapy AT uebesteffen networkandsystemsbasedreengineeringofdendriticcellswithnoncodingrnasforcancerimmunotherapy AT lischerchristopher networkandsystemsbasedreengineeringofdendriticcellswithnoncodingrnasforcancerimmunotherapy AT ekiciarif networkandsystemsbasedreengineeringofdendriticcellswithnoncodingrnasforcancerimmunotherapy AT wittmannjurgen networkandsystemsbasedreengineeringofdendriticcellswithnoncodingrnasforcancerimmunotherapy AT jackhansmartin networkandsystemsbasedreengineeringofdendriticcellswithnoncodingrnasforcancerimmunotherapy AT schaftniels networkandsystemsbasedreengineeringofdendriticcellswithnoncodingrnasforcancerimmunotherapy AT dorriejan networkandsystemsbasedreengineeringofdendriticcellswithnoncodingrnasforcancerimmunotherapy AT verajulio networkandsystemsbasedreengineeringofdendriticcellswithnoncodingrnasforcancerimmunotherapy |