Cargando…

A deep-learning-based prognostic nomogram integrating microscopic digital pathology and macroscopic magnetic resonance images in nasopharyngeal carcinoma: a multi-cohort study

BACKGROUND: To explore the prognostic value of radiomics-based and digital pathology-based imaging biomarkers from macroscopic magnetic resonance imaging (MRI) and microscopic whole-slide images for patients with nasopharyngeal carcinoma (NPC). METHODS: We recruited 220 NPC patients and divided them...

Descripción completa

Detalles Bibliográficos
Autores principales: Zhang, Fan, Zhong, Lian-Zhen, Zhao, Xun, Dong, Di, Yao, Ji-Jin, Wang, Si-Yang, Liu, Ye, Zhu, Ding, Wang, Yin, Wang, Guo-Jie, Wang, Yi-Ming, Li, Dan, Wei, Jiang, Tian, Jie, Shan, Hong
Formato: Online Artículo Texto
Lenguaje:English
Publicado: SAGE Publications 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7739087/
https://www.ncbi.nlm.nih.gov/pubmed/33403013
http://dx.doi.org/10.1177/1758835920971416
Descripción
Sumario:BACKGROUND: To explore the prognostic value of radiomics-based and digital pathology-based imaging biomarkers from macroscopic magnetic resonance imaging (MRI) and microscopic whole-slide images for patients with nasopharyngeal carcinoma (NPC). METHODS: We recruited 220 NPC patients and divided them into training (n = 132), internal test (n = 44), and external test (n = 44) cohorts. The primary endpoint was failure-free survival (FFS). Radiomic features were extracted from pretreatment MRI and selected and integrated into a radiomic signature. The histopathological signature was extracted from whole-slide images of biopsy specimens using an end-to-end deep-learning method. Incorporating two signatures and independent clinical factors, a multi-scale nomogram was constructed. We also tested the correlation between the key imaging features and genetic alternations in an independent cohort of 16 patients (biological test cohort). RESULTS: Both radiomic and histopathologic signatures presented significant associations with treatment failure in the three cohorts (C-index: 0.689–0.779, all p < 0.050). The multi-scale nomogram showed a consistent significant improvement for predicting treatment failure compared with the clinical model in the training (C-index: 0.817 versus 0.730, p < 0.050), internal test (C-index: 0.828 versus 0.602, p < 0.050) and external test (C-index: 0.834 versus 0.679, p < 0.050) cohorts. Furthermore, patients were stratified successfully into two groups with distinguishable prognosis (log-rank p < 0.0010) using our nomogram. We also found that two texture features were related to the genetic alternations of chromatin remodeling pathways in another independent cohort. CONCLUSION: The multi-scale imaging features showed a complementary value in prognostic prediction and may improve individualized treatment in NPC.