Cargando…

A deep-learning-based prognostic nomogram integrating microscopic digital pathology and macroscopic magnetic resonance images in nasopharyngeal carcinoma: a multi-cohort study

BACKGROUND: To explore the prognostic value of radiomics-based and digital pathology-based imaging biomarkers from macroscopic magnetic resonance imaging (MRI) and microscopic whole-slide images for patients with nasopharyngeal carcinoma (NPC). METHODS: We recruited 220 NPC patients and divided them...

Descripción completa

Detalles Bibliográficos
Autores principales: Zhang, Fan, Zhong, Lian-Zhen, Zhao, Xun, Dong, Di, Yao, Ji-Jin, Wang, Si-Yang, Liu, Ye, Zhu, Ding, Wang, Yin, Wang, Guo-Jie, Wang, Yi-Ming, Li, Dan, Wei, Jiang, Tian, Jie, Shan, Hong
Formato: Online Artículo Texto
Lenguaje:English
Publicado: SAGE Publications 2020
Materias:
Acceso en línea:https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7739087/
https://www.ncbi.nlm.nih.gov/pubmed/33403013
http://dx.doi.org/10.1177/1758835920971416
_version_ 1783623258476642304
author Zhang, Fan
Zhong, Lian-Zhen
Zhao, Xun
Dong, Di
Yao, Ji-Jin
Wang, Si-Yang
Liu, Ye
Zhu, Ding
Wang, Yin
Wang, Guo-Jie
Wang, Yi-Ming
Li, Dan
Wei, Jiang
Tian, Jie
Shan, Hong
author_facet Zhang, Fan
Zhong, Lian-Zhen
Zhao, Xun
Dong, Di
Yao, Ji-Jin
Wang, Si-Yang
Liu, Ye
Zhu, Ding
Wang, Yin
Wang, Guo-Jie
Wang, Yi-Ming
Li, Dan
Wei, Jiang
Tian, Jie
Shan, Hong
author_sort Zhang, Fan
collection PubMed
description BACKGROUND: To explore the prognostic value of radiomics-based and digital pathology-based imaging biomarkers from macroscopic magnetic resonance imaging (MRI) and microscopic whole-slide images for patients with nasopharyngeal carcinoma (NPC). METHODS: We recruited 220 NPC patients and divided them into training (n = 132), internal test (n = 44), and external test (n = 44) cohorts. The primary endpoint was failure-free survival (FFS). Radiomic features were extracted from pretreatment MRI and selected and integrated into a radiomic signature. The histopathological signature was extracted from whole-slide images of biopsy specimens using an end-to-end deep-learning method. Incorporating two signatures and independent clinical factors, a multi-scale nomogram was constructed. We also tested the correlation between the key imaging features and genetic alternations in an independent cohort of 16 patients (biological test cohort). RESULTS: Both radiomic and histopathologic signatures presented significant associations with treatment failure in the three cohorts (C-index: 0.689–0.779, all p < 0.050). The multi-scale nomogram showed a consistent significant improvement for predicting treatment failure compared with the clinical model in the training (C-index: 0.817 versus 0.730, p < 0.050), internal test (C-index: 0.828 versus 0.602, p < 0.050) and external test (C-index: 0.834 versus 0.679, p < 0.050) cohorts. Furthermore, patients were stratified successfully into two groups with distinguishable prognosis (log-rank p < 0.0010) using our nomogram. We also found that two texture features were related to the genetic alternations of chromatin remodeling pathways in another independent cohort. CONCLUSION: The multi-scale imaging features showed a complementary value in prognostic prediction and may improve individualized treatment in NPC.
format Online
Article
Text
id pubmed-7739087
institution National Center for Biotechnology Information
language English
publishDate 2020
publisher SAGE Publications
record_format MEDLINE/PubMed
spelling pubmed-77390872021-01-04 A deep-learning-based prognostic nomogram integrating microscopic digital pathology and macroscopic magnetic resonance images in nasopharyngeal carcinoma: a multi-cohort study Zhang, Fan Zhong, Lian-Zhen Zhao, Xun Dong, Di Yao, Ji-Jin Wang, Si-Yang Liu, Ye Zhu, Ding Wang, Yin Wang, Guo-Jie Wang, Yi-Ming Li, Dan Wei, Jiang Tian, Jie Shan, Hong Ther Adv Med Oncol Original Research BACKGROUND: To explore the prognostic value of radiomics-based and digital pathology-based imaging biomarkers from macroscopic magnetic resonance imaging (MRI) and microscopic whole-slide images for patients with nasopharyngeal carcinoma (NPC). METHODS: We recruited 220 NPC patients and divided them into training (n = 132), internal test (n = 44), and external test (n = 44) cohorts. The primary endpoint was failure-free survival (FFS). Radiomic features were extracted from pretreatment MRI and selected and integrated into a radiomic signature. The histopathological signature was extracted from whole-slide images of biopsy specimens using an end-to-end deep-learning method. Incorporating two signatures and independent clinical factors, a multi-scale nomogram was constructed. We also tested the correlation between the key imaging features and genetic alternations in an independent cohort of 16 patients (biological test cohort). RESULTS: Both radiomic and histopathologic signatures presented significant associations with treatment failure in the three cohorts (C-index: 0.689–0.779, all p < 0.050). The multi-scale nomogram showed a consistent significant improvement for predicting treatment failure compared with the clinical model in the training (C-index: 0.817 versus 0.730, p < 0.050), internal test (C-index: 0.828 versus 0.602, p < 0.050) and external test (C-index: 0.834 versus 0.679, p < 0.050) cohorts. Furthermore, patients were stratified successfully into two groups with distinguishable prognosis (log-rank p < 0.0010) using our nomogram. We also found that two texture features were related to the genetic alternations of chromatin remodeling pathways in another independent cohort. CONCLUSION: The multi-scale imaging features showed a complementary value in prognostic prediction and may improve individualized treatment in NPC. SAGE Publications 2020-12-14 /pmc/articles/PMC7739087/ /pubmed/33403013 http://dx.doi.org/10.1177/1758835920971416 Text en © The Author(s), 2020 https://creativecommons.org/licenses/by-nc/4.0/ This article is distributed under the terms of the Creative Commons Attribution-NonCommercial 4.0 License (https://creativecommons.org/licenses/by-nc/4.0/) which permits non-commercial use, reproduction and distribution of the work without further permission provided the original work is attributed as specified on the SAGE and Open Access page (https://us.sagepub.com/en-us/nam/open-access-at-sage).
spellingShingle Original Research
Zhang, Fan
Zhong, Lian-Zhen
Zhao, Xun
Dong, Di
Yao, Ji-Jin
Wang, Si-Yang
Liu, Ye
Zhu, Ding
Wang, Yin
Wang, Guo-Jie
Wang, Yi-Ming
Li, Dan
Wei, Jiang
Tian, Jie
Shan, Hong
A deep-learning-based prognostic nomogram integrating microscopic digital pathology and macroscopic magnetic resonance images in nasopharyngeal carcinoma: a multi-cohort study
title A deep-learning-based prognostic nomogram integrating microscopic digital pathology and macroscopic magnetic resonance images in nasopharyngeal carcinoma: a multi-cohort study
title_full A deep-learning-based prognostic nomogram integrating microscopic digital pathology and macroscopic magnetic resonance images in nasopharyngeal carcinoma: a multi-cohort study
title_fullStr A deep-learning-based prognostic nomogram integrating microscopic digital pathology and macroscopic magnetic resonance images in nasopharyngeal carcinoma: a multi-cohort study
title_full_unstemmed A deep-learning-based prognostic nomogram integrating microscopic digital pathology and macroscopic magnetic resonance images in nasopharyngeal carcinoma: a multi-cohort study
title_short A deep-learning-based prognostic nomogram integrating microscopic digital pathology and macroscopic magnetic resonance images in nasopharyngeal carcinoma: a multi-cohort study
title_sort deep-learning-based prognostic nomogram integrating microscopic digital pathology and macroscopic magnetic resonance images in nasopharyngeal carcinoma: a multi-cohort study
topic Original Research
url https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7739087/
https://www.ncbi.nlm.nih.gov/pubmed/33403013
http://dx.doi.org/10.1177/1758835920971416
work_keys_str_mv AT zhangfan adeeplearningbasedprognosticnomogramintegratingmicroscopicdigitalpathologyandmacroscopicmagneticresonanceimagesinnasopharyngealcarcinomaamulticohortstudy
AT zhonglianzhen adeeplearningbasedprognosticnomogramintegratingmicroscopicdigitalpathologyandmacroscopicmagneticresonanceimagesinnasopharyngealcarcinomaamulticohortstudy
AT zhaoxun adeeplearningbasedprognosticnomogramintegratingmicroscopicdigitalpathologyandmacroscopicmagneticresonanceimagesinnasopharyngealcarcinomaamulticohortstudy
AT dongdi adeeplearningbasedprognosticnomogramintegratingmicroscopicdigitalpathologyandmacroscopicmagneticresonanceimagesinnasopharyngealcarcinomaamulticohortstudy
AT yaojijin adeeplearningbasedprognosticnomogramintegratingmicroscopicdigitalpathologyandmacroscopicmagneticresonanceimagesinnasopharyngealcarcinomaamulticohortstudy
AT wangsiyang adeeplearningbasedprognosticnomogramintegratingmicroscopicdigitalpathologyandmacroscopicmagneticresonanceimagesinnasopharyngealcarcinomaamulticohortstudy
AT liuye adeeplearningbasedprognosticnomogramintegratingmicroscopicdigitalpathologyandmacroscopicmagneticresonanceimagesinnasopharyngealcarcinomaamulticohortstudy
AT zhuding adeeplearningbasedprognosticnomogramintegratingmicroscopicdigitalpathologyandmacroscopicmagneticresonanceimagesinnasopharyngealcarcinomaamulticohortstudy
AT wangyin adeeplearningbasedprognosticnomogramintegratingmicroscopicdigitalpathologyandmacroscopicmagneticresonanceimagesinnasopharyngealcarcinomaamulticohortstudy
AT wangguojie adeeplearningbasedprognosticnomogramintegratingmicroscopicdigitalpathologyandmacroscopicmagneticresonanceimagesinnasopharyngealcarcinomaamulticohortstudy
AT wangyiming adeeplearningbasedprognosticnomogramintegratingmicroscopicdigitalpathologyandmacroscopicmagneticresonanceimagesinnasopharyngealcarcinomaamulticohortstudy
AT lidan adeeplearningbasedprognosticnomogramintegratingmicroscopicdigitalpathologyandmacroscopicmagneticresonanceimagesinnasopharyngealcarcinomaamulticohortstudy
AT weijiang adeeplearningbasedprognosticnomogramintegratingmicroscopicdigitalpathologyandmacroscopicmagneticresonanceimagesinnasopharyngealcarcinomaamulticohortstudy
AT tianjie adeeplearningbasedprognosticnomogramintegratingmicroscopicdigitalpathologyandmacroscopicmagneticresonanceimagesinnasopharyngealcarcinomaamulticohortstudy
AT shanhong adeeplearningbasedprognosticnomogramintegratingmicroscopicdigitalpathologyandmacroscopicmagneticresonanceimagesinnasopharyngealcarcinomaamulticohortstudy
AT zhangfan deeplearningbasedprognosticnomogramintegratingmicroscopicdigitalpathologyandmacroscopicmagneticresonanceimagesinnasopharyngealcarcinomaamulticohortstudy
AT zhonglianzhen deeplearningbasedprognosticnomogramintegratingmicroscopicdigitalpathologyandmacroscopicmagneticresonanceimagesinnasopharyngealcarcinomaamulticohortstudy
AT zhaoxun deeplearningbasedprognosticnomogramintegratingmicroscopicdigitalpathologyandmacroscopicmagneticresonanceimagesinnasopharyngealcarcinomaamulticohortstudy
AT dongdi deeplearningbasedprognosticnomogramintegratingmicroscopicdigitalpathologyandmacroscopicmagneticresonanceimagesinnasopharyngealcarcinomaamulticohortstudy
AT yaojijin deeplearningbasedprognosticnomogramintegratingmicroscopicdigitalpathologyandmacroscopicmagneticresonanceimagesinnasopharyngealcarcinomaamulticohortstudy
AT wangsiyang deeplearningbasedprognosticnomogramintegratingmicroscopicdigitalpathologyandmacroscopicmagneticresonanceimagesinnasopharyngealcarcinomaamulticohortstudy
AT liuye deeplearningbasedprognosticnomogramintegratingmicroscopicdigitalpathologyandmacroscopicmagneticresonanceimagesinnasopharyngealcarcinomaamulticohortstudy
AT zhuding deeplearningbasedprognosticnomogramintegratingmicroscopicdigitalpathologyandmacroscopicmagneticresonanceimagesinnasopharyngealcarcinomaamulticohortstudy
AT wangyin deeplearningbasedprognosticnomogramintegratingmicroscopicdigitalpathologyandmacroscopicmagneticresonanceimagesinnasopharyngealcarcinomaamulticohortstudy
AT wangguojie deeplearningbasedprognosticnomogramintegratingmicroscopicdigitalpathologyandmacroscopicmagneticresonanceimagesinnasopharyngealcarcinomaamulticohortstudy
AT wangyiming deeplearningbasedprognosticnomogramintegratingmicroscopicdigitalpathologyandmacroscopicmagneticresonanceimagesinnasopharyngealcarcinomaamulticohortstudy
AT lidan deeplearningbasedprognosticnomogramintegratingmicroscopicdigitalpathologyandmacroscopicmagneticresonanceimagesinnasopharyngealcarcinomaamulticohortstudy
AT weijiang deeplearningbasedprognosticnomogramintegratingmicroscopicdigitalpathologyandmacroscopicmagneticresonanceimagesinnasopharyngealcarcinomaamulticohortstudy
AT tianjie deeplearningbasedprognosticnomogramintegratingmicroscopicdigitalpathologyandmacroscopicmagneticresonanceimagesinnasopharyngealcarcinomaamulticohortstudy
AT shanhong deeplearningbasedprognosticnomogramintegratingmicroscopicdigitalpathologyandmacroscopicmagneticresonanceimagesinnasopharyngealcarcinomaamulticohortstudy