Cargando…
Detection Accuracy of Soccer Players in Aerial Images Captured from Several Viewpoints
In the fields of professional and amateur sports, players’ health, physical and physiological conditions during exercise should be properly monitored and managed. The authors of this paper previously proposed a real-time vital-sign monitoring system for players using a wireless multi-hop sensor netw...
Autores principales: | , , , |
---|---|
Formato: | Online Artículo Texto |
Lenguaje: | English |
Publicado: |
MDPI
2019
|
Materias: | |
Acceso en línea: | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7739321/ https://www.ncbi.nlm.nih.gov/pubmed/33467324 http://dx.doi.org/10.3390/jfmk4010009 |
_version_ | 1783623310005764096 |
---|---|
author | Oki, Takuro Miyamoto, Ryusuke Yomo, Hiroyuki Hara, Shinsuke |
author_facet | Oki, Takuro Miyamoto, Ryusuke Yomo, Hiroyuki Hara, Shinsuke |
author_sort | Oki, Takuro |
collection | PubMed |
description | In the fields of professional and amateur sports, players’ health, physical and physiological conditions during exercise should be properly monitored and managed. The authors of this paper previously proposed a real-time vital-sign monitoring system for players using a wireless multi-hop sensor network that transmits their vital data. However, existing routing schemes based on the received signal strength indicator or global positioning system do not work well, because of the high speeds and the density of sensor nodes attached to players. To solve this problem, we proposed a novel scheme, image-assisted routing (IAR), which estimates the locations of sensor nodes using images captured from cameras mounted on unmanned aerial vehicles. However, it is not clear where the best viewpoints are for aerial player detection. In this study, the authors investigated detection accuracy from several viewpoints using an aerial-image dataset generated with computer graphics. Experimental results show that the detection accuracy was best when the viewpoints were slightly distant from just above the center of the field. In the best case, the detection accuracy was very good: 0.005524 miss rate at 0.01 false positive-per-image. These results are informative for player detection using aerial images and can facilitate to realize IAR. |
format | Online Article Text |
id | pubmed-7739321 |
institution | National Center for Biotechnology Information |
language | English |
publishDate | 2019 |
publisher | MDPI |
record_format | MEDLINE/PubMed |
spelling | pubmed-77393212021-01-13 Detection Accuracy of Soccer Players in Aerial Images Captured from Several Viewpoints Oki, Takuro Miyamoto, Ryusuke Yomo, Hiroyuki Hara, Shinsuke J Funct Morphol Kinesiol Article In the fields of professional and amateur sports, players’ health, physical and physiological conditions during exercise should be properly monitored and managed. The authors of this paper previously proposed a real-time vital-sign monitoring system for players using a wireless multi-hop sensor network that transmits their vital data. However, existing routing schemes based on the received signal strength indicator or global positioning system do not work well, because of the high speeds and the density of sensor nodes attached to players. To solve this problem, we proposed a novel scheme, image-assisted routing (IAR), which estimates the locations of sensor nodes using images captured from cameras mounted on unmanned aerial vehicles. However, it is not clear where the best viewpoints are for aerial player detection. In this study, the authors investigated detection accuracy from several viewpoints using an aerial-image dataset generated with computer graphics. Experimental results show that the detection accuracy was best when the viewpoints were slightly distant from just above the center of the field. In the best case, the detection accuracy was very good: 0.005524 miss rate at 0.01 false positive-per-image. These results are informative for player detection using aerial images and can facilitate to realize IAR. MDPI 2019-01-21 /pmc/articles/PMC7739321/ /pubmed/33467324 http://dx.doi.org/10.3390/jfmk4010009 Text en © 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/). |
spellingShingle | Article Oki, Takuro Miyamoto, Ryusuke Yomo, Hiroyuki Hara, Shinsuke Detection Accuracy of Soccer Players in Aerial Images Captured from Several Viewpoints |
title | Detection Accuracy of Soccer Players in Aerial Images Captured from Several Viewpoints |
title_full | Detection Accuracy of Soccer Players in Aerial Images Captured from Several Viewpoints |
title_fullStr | Detection Accuracy of Soccer Players in Aerial Images Captured from Several Viewpoints |
title_full_unstemmed | Detection Accuracy of Soccer Players in Aerial Images Captured from Several Viewpoints |
title_short | Detection Accuracy of Soccer Players in Aerial Images Captured from Several Viewpoints |
title_sort | detection accuracy of soccer players in aerial images captured from several viewpoints |
topic | Article |
url | https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7739321/ https://www.ncbi.nlm.nih.gov/pubmed/33467324 http://dx.doi.org/10.3390/jfmk4010009 |
work_keys_str_mv | AT okitakuro detectionaccuracyofsoccerplayersinaerialimagescapturedfromseveralviewpoints AT miyamotoryusuke detectionaccuracyofsoccerplayersinaerialimagescapturedfromseveralviewpoints AT yomohiroyuki detectionaccuracyofsoccerplayersinaerialimagescapturedfromseveralviewpoints AT harashinsuke detectionaccuracyofsoccerplayersinaerialimagescapturedfromseveralviewpoints |